File:  [local] / rpl / lapack / lapack / dsbevx.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:03:56 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE DSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
    2:      $                   VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
    3:      $                   IFAIL, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBZ, RANGE, UPLO
   12:       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
   13:       DOUBLE PRECISION   ABSTOL, VL, VU
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IFAIL( * ), IWORK( * )
   17:       DOUBLE PRECISION   AB( LDAB, * ), Q( LDQ, * ), W( * ), WORK( * ),
   18:      $                   Z( LDZ, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  DSBEVX computes selected eigenvalues and, optionally, eigenvectors
   25: *  of a real symmetric band matrix A.  Eigenvalues and eigenvectors can
   26: *  be selected by specifying either a range of values or a range of
   27: *  indices for the desired eigenvalues.
   28: *
   29: *  Arguments
   30: *  =========
   31: *
   32: *  JOBZ    (input) CHARACTER*1
   33: *          = 'N':  Compute eigenvalues only;
   34: *          = 'V':  Compute eigenvalues and eigenvectors.
   35: *
   36: *  RANGE   (input) CHARACTER*1
   37: *          = 'A': all eigenvalues will be found;
   38: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   39: *                 will be found;
   40: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   41: *
   42: *  UPLO    (input) CHARACTER*1
   43: *          = 'U':  Upper triangle of A is stored;
   44: *          = 'L':  Lower triangle of A is stored.
   45: *
   46: *  N       (input) INTEGER
   47: *          The order of the matrix A.  N >= 0.
   48: *
   49: *  KD      (input) INTEGER
   50: *          The number of superdiagonals of the matrix A if UPLO = 'U',
   51: *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   52: *
   53: *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
   54: *          On entry, the upper or lower triangle of the symmetric band
   55: *          matrix A, stored in the first KD+1 rows of the array.  The
   56: *          j-th column of A is stored in the j-th column of the array AB
   57: *          as follows:
   58: *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   59: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   60: *
   61: *          On exit, AB is overwritten by values generated during the
   62: *          reduction to tridiagonal form.  If UPLO = 'U', the first
   63: *          superdiagonal and the diagonal of the tridiagonal matrix T
   64: *          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
   65: *          the diagonal and first subdiagonal of T are returned in the
   66: *          first two rows of AB.
   67: *
   68: *  LDAB    (input) INTEGER
   69: *          The leading dimension of the array AB.  LDAB >= KD + 1.
   70: *
   71: *  Q       (output) DOUBLE PRECISION array, dimension (LDQ, N)
   72: *          If JOBZ = 'V', the N-by-N orthogonal matrix used in the
   73: *                         reduction to tridiagonal form.
   74: *          If JOBZ = 'N', the array Q is not referenced.
   75: *
   76: *  LDQ     (input) INTEGER
   77: *          The leading dimension of the array Q.  If JOBZ = 'V', then
   78: *          LDQ >= max(1,N).
   79: *
   80: *  VL      (input) DOUBLE PRECISION
   81: *  VU      (input) DOUBLE PRECISION
   82: *          If RANGE='V', the lower and upper bounds of the interval to
   83: *          be searched for eigenvalues. VL < VU.
   84: *          Not referenced if RANGE = 'A' or 'I'.
   85: *
   86: *  IL      (input) INTEGER
   87: *  IU      (input) INTEGER
   88: *          If RANGE='I', the indices (in ascending order) of the
   89: *          smallest and largest eigenvalues to be returned.
   90: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
   91: *          Not referenced if RANGE = 'A' or 'V'.
   92: *
   93: *  ABSTOL  (input) DOUBLE PRECISION
   94: *          The absolute error tolerance for the eigenvalues.
   95: *          An approximate eigenvalue is accepted as converged
   96: *          when it is determined to lie in an interval [a,b]
   97: *          of width less than or equal to
   98: *
   99: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
  100: *
  101: *          where EPS is the machine precision.  If ABSTOL is less than
  102: *          or equal to zero, then  EPS*|T|  will be used in its place,
  103: *          where |T| is the 1-norm of the tridiagonal matrix obtained
  104: *          by reducing AB to tridiagonal form.
  105: *
  106: *          Eigenvalues will be computed most accurately when ABSTOL is
  107: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  108: *          If this routine returns with INFO>0, indicating that some
  109: *          eigenvectors did not converge, try setting ABSTOL to
  110: *          2*DLAMCH('S').
  111: *
  112: *          See "Computing Small Singular Values of Bidiagonal Matrices
  113: *          with Guaranteed High Relative Accuracy," by Demmel and
  114: *          Kahan, LAPACK Working Note #3.
  115: *
  116: *  M       (output) INTEGER
  117: *          The total number of eigenvalues found.  0 <= M <= N.
  118: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  119: *
  120: *  W       (output) DOUBLE PRECISION array, dimension (N)
  121: *          The first M elements contain the selected eigenvalues in
  122: *          ascending order.
  123: *
  124: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
  125: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  126: *          contain the orthonormal eigenvectors of the matrix A
  127: *          corresponding to the selected eigenvalues, with the i-th
  128: *          column of Z holding the eigenvector associated with W(i).
  129: *          If an eigenvector fails to converge, then that column of Z
  130: *          contains the latest approximation to the eigenvector, and the
  131: *          index of the eigenvector is returned in IFAIL.
  132: *          If JOBZ = 'N', then Z is not referenced.
  133: *          Note: the user must ensure that at least max(1,M) columns are
  134: *          supplied in the array Z; if RANGE = 'V', the exact value of M
  135: *          is not known in advance and an upper bound must be used.
  136: *
  137: *  LDZ     (input) INTEGER
  138: *          The leading dimension of the array Z.  LDZ >= 1, and if
  139: *          JOBZ = 'V', LDZ >= max(1,N).
  140: *
  141: *  WORK    (workspace) DOUBLE PRECISION array, dimension (7*N)
  142: *
  143: *  IWORK   (workspace) INTEGER array, dimension (5*N)
  144: *
  145: *  IFAIL   (output) INTEGER array, dimension (N)
  146: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
  147: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  148: *          indices of the eigenvectors that failed to converge.
  149: *          If JOBZ = 'N', then IFAIL is not referenced.
  150: *
  151: *  INFO    (output) INTEGER
  152: *          = 0:  successful exit.
  153: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  154: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
  155: *                Their indices are stored in array IFAIL.
  156: *
  157: *  =====================================================================
  158: *
  159: *     .. Parameters ..
  160:       DOUBLE PRECISION   ZERO, ONE
  161:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  162: *     ..
  163: *     .. Local Scalars ..
  164:       LOGICAL            ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ
  165:       CHARACTER          ORDER
  166:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  167:      $                   INDISP, INDIWO, INDWRK, ISCALE, ITMP1, J, JJ,
  168:      $                   NSPLIT
  169:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  170:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  171: *     ..
  172: *     .. External Functions ..
  173:       LOGICAL            LSAME
  174:       DOUBLE PRECISION   DLAMCH, DLANSB
  175:       EXTERNAL           LSAME, DLAMCH, DLANSB
  176: *     ..
  177: *     .. External Subroutines ..
  178:       EXTERNAL           DCOPY, DGEMV, DLACPY, DLASCL, DSBTRD, DSCAL,
  179:      $                   DSTEBZ, DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
  180: *     ..
  181: *     .. Intrinsic Functions ..
  182:       INTRINSIC          MAX, MIN, SQRT
  183: *     ..
  184: *     .. Executable Statements ..
  185: *
  186: *     Test the input parameters.
  187: *
  188:       WANTZ = LSAME( JOBZ, 'V' )
  189:       ALLEIG = LSAME( RANGE, 'A' )
  190:       VALEIG = LSAME( RANGE, 'V' )
  191:       INDEIG = LSAME( RANGE, 'I' )
  192:       LOWER = LSAME( UPLO, 'L' )
  193: *
  194:       INFO = 0
  195:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  196:          INFO = -1
  197:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  198:          INFO = -2
  199:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  200:          INFO = -3
  201:       ELSE IF( N.LT.0 ) THEN
  202:          INFO = -4
  203:       ELSE IF( KD.LT.0 ) THEN
  204:          INFO = -5
  205:       ELSE IF( LDAB.LT.KD+1 ) THEN
  206:          INFO = -7
  207:       ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
  208:          INFO = -9
  209:       ELSE
  210:          IF( VALEIG ) THEN
  211:             IF( N.GT.0 .AND. VU.LE.VL )
  212:      $         INFO = -11
  213:          ELSE IF( INDEIG ) THEN
  214:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  215:                INFO = -12
  216:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  217:                INFO = -13
  218:             END IF
  219:          END IF
  220:       END IF
  221:       IF( INFO.EQ.0 ) THEN
  222:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  223:      $      INFO = -18
  224:       END IF
  225: *
  226:       IF( INFO.NE.0 ) THEN
  227:          CALL XERBLA( 'DSBEVX', -INFO )
  228:          RETURN
  229:       END IF
  230: *
  231: *     Quick return if possible
  232: *
  233:       M = 0
  234:       IF( N.EQ.0 )
  235:      $   RETURN
  236: *
  237:       IF( N.EQ.1 ) THEN
  238:          M = 1
  239:          IF( LOWER ) THEN
  240:             TMP1 = AB( 1, 1 )
  241:          ELSE
  242:             TMP1 = AB( KD+1, 1 )
  243:          END IF
  244:          IF( VALEIG ) THEN
  245:             IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
  246:      $         M = 0
  247:          END IF
  248:          IF( M.EQ.1 ) THEN
  249:             W( 1 ) = TMP1
  250:             IF( WANTZ )
  251:      $         Z( 1, 1 ) = ONE
  252:          END IF
  253:          RETURN
  254:       END IF
  255: *
  256: *     Get machine constants.
  257: *
  258:       SAFMIN = DLAMCH( 'Safe minimum' )
  259:       EPS = DLAMCH( 'Precision' )
  260:       SMLNUM = SAFMIN / EPS
  261:       BIGNUM = ONE / SMLNUM
  262:       RMIN = SQRT( SMLNUM )
  263:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  264: *
  265: *     Scale matrix to allowable range, if necessary.
  266: *
  267:       ISCALE = 0
  268:       ABSTLL = ABSTOL
  269:       IF( VALEIG ) THEN
  270:          VLL = VL
  271:          VUU = VU
  272:       ELSE
  273:          VLL = ZERO
  274:          VUU = ZERO
  275:       END IF
  276:       ANRM = DLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
  277:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  278:          ISCALE = 1
  279:          SIGMA = RMIN / ANRM
  280:       ELSE IF( ANRM.GT.RMAX ) THEN
  281:          ISCALE = 1
  282:          SIGMA = RMAX / ANRM
  283:       END IF
  284:       IF( ISCALE.EQ.1 ) THEN
  285:          IF( LOWER ) THEN
  286:             CALL DLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  287:          ELSE
  288:             CALL DLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  289:          END IF
  290:          IF( ABSTOL.GT.0 )
  291:      $      ABSTLL = ABSTOL*SIGMA
  292:          IF( VALEIG ) THEN
  293:             VLL = VL*SIGMA
  294:             VUU = VU*SIGMA
  295:          END IF
  296:       END IF
  297: *
  298: *     Call DSBTRD to reduce symmetric band matrix to tridiagonal form.
  299: *
  300:       INDD = 1
  301:       INDE = INDD + N
  302:       INDWRK = INDE + N
  303:       CALL DSBTRD( JOBZ, UPLO, N, KD, AB, LDAB, WORK( INDD ),
  304:      $             WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
  305: *
  306: *     If all eigenvalues are desired and ABSTOL is less than or equal
  307: *     to zero, then call DSTERF or SSTEQR.  If this fails for some
  308: *     eigenvalue, then try DSTEBZ.
  309: *
  310:       TEST = .FALSE.
  311:       IF (INDEIG) THEN
  312:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  313:             TEST = .TRUE.
  314:          END IF
  315:       END IF
  316:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  317:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
  318:          INDEE = INDWRK + 2*N
  319:          IF( .NOT.WANTZ ) THEN
  320:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  321:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
  322:          ELSE
  323:             CALL DLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
  324:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  325:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
  326:      $                   WORK( INDWRK ), INFO )
  327:             IF( INFO.EQ.0 ) THEN
  328:                DO 10 I = 1, N
  329:                   IFAIL( I ) = 0
  330:    10          CONTINUE
  331:             END IF
  332:          END IF
  333:          IF( INFO.EQ.0 ) THEN
  334:             M = N
  335:             GO TO 30
  336:          END IF
  337:          INFO = 0
  338:       END IF
  339: *
  340: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
  341: *
  342:       IF( WANTZ ) THEN
  343:          ORDER = 'B'
  344:       ELSE
  345:          ORDER = 'E'
  346:       END IF
  347:       INDIBL = 1
  348:       INDISP = INDIBL + N
  349:       INDIWO = INDISP + N
  350:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  351:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  352:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
  353:      $             IWORK( INDIWO ), INFO )
  354: *
  355:       IF( WANTZ ) THEN
  356:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  357:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  358:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
  359: *
  360: *        Apply orthogonal matrix used in reduction to tridiagonal
  361: *        form to eigenvectors returned by DSTEIN.
  362: *
  363:          DO 20 J = 1, M
  364:             CALL DCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
  365:             CALL DGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
  366:      $                  Z( 1, J ), 1 )
  367:    20    CONTINUE
  368:       END IF
  369: *
  370: *     If matrix was scaled, then rescale eigenvalues appropriately.
  371: *
  372:    30 CONTINUE
  373:       IF( ISCALE.EQ.1 ) THEN
  374:          IF( INFO.EQ.0 ) THEN
  375:             IMAX = M
  376:          ELSE
  377:             IMAX = INFO - 1
  378:          END IF
  379:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  380:       END IF
  381: *
  382: *     If eigenvalues are not in order, then sort them, along with
  383: *     eigenvectors.
  384: *
  385:       IF( WANTZ ) THEN
  386:          DO 50 J = 1, M - 1
  387:             I = 0
  388:             TMP1 = W( J )
  389:             DO 40 JJ = J + 1, M
  390:                IF( W( JJ ).LT.TMP1 ) THEN
  391:                   I = JJ
  392:                   TMP1 = W( JJ )
  393:                END IF
  394:    40       CONTINUE
  395: *
  396:             IF( I.NE.0 ) THEN
  397:                ITMP1 = IWORK( INDIBL+I-1 )
  398:                W( I ) = W( J )
  399:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  400:                W( J ) = TMP1
  401:                IWORK( INDIBL+J-1 ) = ITMP1
  402:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  403:                IF( INFO.NE.0 ) THEN
  404:                   ITMP1 = IFAIL( I )
  405:                   IFAIL( I ) = IFAIL( J )
  406:                   IFAIL( J ) = ITMP1
  407:                END IF
  408:             END IF
  409:    50    CONTINUE
  410:       END IF
  411: *
  412:       RETURN
  413: *
  414: *     End of DSBEVX
  415: *
  416:       END

CVSweb interface <joel.bertrand@systella.fr>