File:  [local] / rpl / lapack / lapack / dsbevx.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:05 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> DSBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSBEVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbevx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbevx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbevx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
   22: *                          VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
   23: *                          IFAIL, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
   28: *       DOUBLE PRECISION   ABSTOL, VL, VU
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IFAIL( * ), IWORK( * )
   32: *       DOUBLE PRECISION   AB( LDAB, * ), Q( LDQ, * ), W( * ), WORK( * ),
   33: *      $                   Z( LDZ, * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DSBEVX computes selected eigenvalues and, optionally, eigenvectors
   43: *> of a real symmetric band matrix A.  Eigenvalues and eigenvectors can
   44: *> be selected by specifying either a range of values or a range of
   45: *> indices for the desired eigenvalues.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] JOBZ
   52: *> \verbatim
   53: *>          JOBZ is CHARACTER*1
   54: *>          = 'N':  Compute eigenvalues only;
   55: *>          = 'V':  Compute eigenvalues and eigenvectors.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] RANGE
   59: *> \verbatim
   60: *>          RANGE is CHARACTER*1
   61: *>          = 'A': all eigenvalues will be found;
   62: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   63: *>                 will be found;
   64: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] UPLO
   68: *> \verbatim
   69: *>          UPLO is CHARACTER*1
   70: *>          = 'U':  Upper triangle of A is stored;
   71: *>          = 'L':  Lower triangle of A is stored.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] N
   75: *> \verbatim
   76: *>          N is INTEGER
   77: *>          The order of the matrix A.  N >= 0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] KD
   81: *> \verbatim
   82: *>          KD is INTEGER
   83: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
   84: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   85: *> \endverbatim
   86: *>
   87: *> \param[in,out] AB
   88: *> \verbatim
   89: *>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
   90: *>          On entry, the upper or lower triangle of the symmetric band
   91: *>          matrix A, stored in the first KD+1 rows of the array.  The
   92: *>          j-th column of A is stored in the j-th column of the array AB
   93: *>          as follows:
   94: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   95: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   96: *>
   97: *>          On exit, AB is overwritten by values generated during the
   98: *>          reduction to tridiagonal form.  If UPLO = 'U', the first
   99: *>          superdiagonal and the diagonal of the tridiagonal matrix T
  100: *>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
  101: *>          the diagonal and first subdiagonal of T are returned in the
  102: *>          first two rows of AB.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] LDAB
  106: *> \verbatim
  107: *>          LDAB is INTEGER
  108: *>          The leading dimension of the array AB.  LDAB >= KD + 1.
  109: *> \endverbatim
  110: *>
  111: *> \param[out] Q
  112: *> \verbatim
  113: *>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
  114: *>          If JOBZ = 'V', the N-by-N orthogonal matrix used in the
  115: *>                         reduction to tridiagonal form.
  116: *>          If JOBZ = 'N', the array Q is not referenced.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] LDQ
  120: *> \verbatim
  121: *>          LDQ is INTEGER
  122: *>          The leading dimension of the array Q.  If JOBZ = 'V', then
  123: *>          LDQ >= max(1,N).
  124: *> \endverbatim
  125: *>
  126: *> \param[in] VL
  127: *> \verbatim
  128: *>          VL is DOUBLE PRECISION
  129: *>          If RANGE='V', the lower bound of the interval to
  130: *>          be searched for eigenvalues. VL < VU.
  131: *>          Not referenced if RANGE = 'A' or 'I'.
  132: *> \endverbatim
  133: *>
  134: *> \param[in] VU
  135: *> \verbatim
  136: *>          VU is DOUBLE PRECISION
  137: *>          If RANGE='V', the upper bound of the interval to
  138: *>          be searched for eigenvalues. VL < VU.
  139: *>          Not referenced if RANGE = 'A' or 'I'.
  140: *> \endverbatim
  141: *>
  142: *> \param[in] IL
  143: *> \verbatim
  144: *>          IL is INTEGER
  145: *>          If RANGE='I', the index of the
  146: *>          smallest eigenvalue to be returned.
  147: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  148: *>          Not referenced if RANGE = 'A' or 'V'.
  149: *> \endverbatim
  150: *>
  151: *> \param[in] IU
  152: *> \verbatim
  153: *>          IU is INTEGER
  154: *>          If RANGE='I', the index of the
  155: *>          largest eigenvalue to be returned.
  156: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  157: *>          Not referenced if RANGE = 'A' or 'V'.
  158: *> \endverbatim
  159: *>
  160: *> \param[in] ABSTOL
  161: *> \verbatim
  162: *>          ABSTOL is DOUBLE PRECISION
  163: *>          The absolute error tolerance for the eigenvalues.
  164: *>          An approximate eigenvalue is accepted as converged
  165: *>          when it is determined to lie in an interval [a,b]
  166: *>          of width less than or equal to
  167: *>
  168: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  169: *>
  170: *>          where EPS is the machine precision.  If ABSTOL is less than
  171: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  172: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  173: *>          by reducing AB to tridiagonal form.
  174: *>
  175: *>          Eigenvalues will be computed most accurately when ABSTOL is
  176: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  177: *>          If this routine returns with INFO>0, indicating that some
  178: *>          eigenvectors did not converge, try setting ABSTOL to
  179: *>          2*DLAMCH('S').
  180: *>
  181: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  182: *>          with Guaranteed High Relative Accuracy," by Demmel and
  183: *>          Kahan, LAPACK Working Note #3.
  184: *> \endverbatim
  185: *>
  186: *> \param[out] M
  187: *> \verbatim
  188: *>          M is INTEGER
  189: *>          The total number of eigenvalues found.  0 <= M <= N.
  190: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  191: *> \endverbatim
  192: *>
  193: *> \param[out] W
  194: *> \verbatim
  195: *>          W is DOUBLE PRECISION array, dimension (N)
  196: *>          The first M elements contain the selected eigenvalues in
  197: *>          ascending order.
  198: *> \endverbatim
  199: *>
  200: *> \param[out] Z
  201: *> \verbatim
  202: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
  203: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  204: *>          contain the orthonormal eigenvectors of the matrix A
  205: *>          corresponding to the selected eigenvalues, with the i-th
  206: *>          column of Z holding the eigenvector associated with W(i).
  207: *>          If an eigenvector fails to converge, then that column of Z
  208: *>          contains the latest approximation to the eigenvector, and the
  209: *>          index of the eigenvector is returned in IFAIL.
  210: *>          If JOBZ = 'N', then Z is not referenced.
  211: *>          Note: the user must ensure that at least max(1,M) columns are
  212: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  213: *>          is not known in advance and an upper bound must be used.
  214: *> \endverbatim
  215: *>
  216: *> \param[in] LDZ
  217: *> \verbatim
  218: *>          LDZ is INTEGER
  219: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  220: *>          JOBZ = 'V', LDZ >= max(1,N).
  221: *> \endverbatim
  222: *>
  223: *> \param[out] WORK
  224: *> \verbatim
  225: *>          WORK is DOUBLE PRECISION array, dimension (7*N)
  226: *> \endverbatim
  227: *>
  228: *> \param[out] IWORK
  229: *> \verbatim
  230: *>          IWORK is INTEGER array, dimension (5*N)
  231: *> \endverbatim
  232: *>
  233: *> \param[out] IFAIL
  234: *> \verbatim
  235: *>          IFAIL is INTEGER array, dimension (N)
  236: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  237: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  238: *>          indices of the eigenvectors that failed to converge.
  239: *>          If JOBZ = 'N', then IFAIL is not referenced.
  240: *> \endverbatim
  241: *>
  242: *> \param[out] INFO
  243: *> \verbatim
  244: *>          INFO is INTEGER
  245: *>          = 0:  successful exit.
  246: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  247: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
  248: *>                Their indices are stored in array IFAIL.
  249: *> \endverbatim
  250: *
  251: *  Authors:
  252: *  ========
  253: *
  254: *> \author Univ. of Tennessee
  255: *> \author Univ. of California Berkeley
  256: *> \author Univ. of Colorado Denver
  257: *> \author NAG Ltd.
  258: *
  259: *> \ingroup doubleOTHEReigen
  260: *
  261: *  =====================================================================
  262:       SUBROUTINE DSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
  263:      $                   VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
  264:      $                   IFAIL, INFO )
  265: *
  266: *  -- LAPACK driver routine --
  267: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  268: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  269: *
  270: *     .. Scalar Arguments ..
  271:       CHARACTER          JOBZ, RANGE, UPLO
  272:       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
  273:       DOUBLE PRECISION   ABSTOL, VL, VU
  274: *     ..
  275: *     .. Array Arguments ..
  276:       INTEGER            IFAIL( * ), IWORK( * )
  277:       DOUBLE PRECISION   AB( LDAB, * ), Q( LDQ, * ), W( * ), WORK( * ),
  278:      $                   Z( LDZ, * )
  279: *     ..
  280: *
  281: *  =====================================================================
  282: *
  283: *     .. Parameters ..
  284:       DOUBLE PRECISION   ZERO, ONE
  285:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  286: *     ..
  287: *     .. Local Scalars ..
  288:       LOGICAL            ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ
  289:       CHARACTER          ORDER
  290:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  291:      $                   INDISP, INDIWO, INDWRK, ISCALE, ITMP1, J, JJ,
  292:      $                   NSPLIT
  293:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  294:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  295: *     ..
  296: *     .. External Functions ..
  297:       LOGICAL            LSAME
  298:       DOUBLE PRECISION   DLAMCH, DLANSB
  299:       EXTERNAL           LSAME, DLAMCH, DLANSB
  300: *     ..
  301: *     .. External Subroutines ..
  302:       EXTERNAL           DCOPY, DGEMV, DLACPY, DLASCL, DSBTRD, DSCAL,
  303:      $                   DSTEBZ, DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
  304: *     ..
  305: *     .. Intrinsic Functions ..
  306:       INTRINSIC          MAX, MIN, SQRT
  307: *     ..
  308: *     .. Executable Statements ..
  309: *
  310: *     Test the input parameters.
  311: *
  312:       WANTZ = LSAME( JOBZ, 'V' )
  313:       ALLEIG = LSAME( RANGE, 'A' )
  314:       VALEIG = LSAME( RANGE, 'V' )
  315:       INDEIG = LSAME( RANGE, 'I' )
  316:       LOWER = LSAME( UPLO, 'L' )
  317: *
  318:       INFO = 0
  319:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  320:          INFO = -1
  321:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  322:          INFO = -2
  323:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  324:          INFO = -3
  325:       ELSE IF( N.LT.0 ) THEN
  326:          INFO = -4
  327:       ELSE IF( KD.LT.0 ) THEN
  328:          INFO = -5
  329:       ELSE IF( LDAB.LT.KD+1 ) THEN
  330:          INFO = -7
  331:       ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
  332:          INFO = -9
  333:       ELSE
  334:          IF( VALEIG ) THEN
  335:             IF( N.GT.0 .AND. VU.LE.VL )
  336:      $         INFO = -11
  337:          ELSE IF( INDEIG ) THEN
  338:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  339:                INFO = -12
  340:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  341:                INFO = -13
  342:             END IF
  343:          END IF
  344:       END IF
  345:       IF( INFO.EQ.0 ) THEN
  346:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  347:      $      INFO = -18
  348:       END IF
  349: *
  350:       IF( INFO.NE.0 ) THEN
  351:          CALL XERBLA( 'DSBEVX', -INFO )
  352:          RETURN
  353:       END IF
  354: *
  355: *     Quick return if possible
  356: *
  357:       M = 0
  358:       IF( N.EQ.0 )
  359:      $   RETURN
  360: *
  361:       IF( N.EQ.1 ) THEN
  362:          M = 1
  363:          IF( LOWER ) THEN
  364:             TMP1 = AB( 1, 1 )
  365:          ELSE
  366:             TMP1 = AB( KD+1, 1 )
  367:          END IF
  368:          IF( VALEIG ) THEN
  369:             IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
  370:      $         M = 0
  371:          END IF
  372:          IF( M.EQ.1 ) THEN
  373:             W( 1 ) = TMP1
  374:             IF( WANTZ )
  375:      $         Z( 1, 1 ) = ONE
  376:          END IF
  377:          RETURN
  378:       END IF
  379: *
  380: *     Get machine constants.
  381: *
  382:       SAFMIN = DLAMCH( 'Safe minimum' )
  383:       EPS = DLAMCH( 'Precision' )
  384:       SMLNUM = SAFMIN / EPS
  385:       BIGNUM = ONE / SMLNUM
  386:       RMIN = SQRT( SMLNUM )
  387:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  388: *
  389: *     Scale matrix to allowable range, if necessary.
  390: *
  391:       ISCALE = 0
  392:       ABSTLL = ABSTOL
  393:       IF( VALEIG ) THEN
  394:          VLL = VL
  395:          VUU = VU
  396:       ELSE
  397:          VLL = ZERO
  398:          VUU = ZERO
  399:       END IF
  400:       ANRM = DLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
  401:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  402:          ISCALE = 1
  403:          SIGMA = RMIN / ANRM
  404:       ELSE IF( ANRM.GT.RMAX ) THEN
  405:          ISCALE = 1
  406:          SIGMA = RMAX / ANRM
  407:       END IF
  408:       IF( ISCALE.EQ.1 ) THEN
  409:          IF( LOWER ) THEN
  410:             CALL DLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  411:          ELSE
  412:             CALL DLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  413:          END IF
  414:          IF( ABSTOL.GT.0 )
  415:      $      ABSTLL = ABSTOL*SIGMA
  416:          IF( VALEIG ) THEN
  417:             VLL = VL*SIGMA
  418:             VUU = VU*SIGMA
  419:          END IF
  420:       END IF
  421: *
  422: *     Call DSBTRD to reduce symmetric band matrix to tridiagonal form.
  423: *
  424:       INDD = 1
  425:       INDE = INDD + N
  426:       INDWRK = INDE + N
  427:       CALL DSBTRD( JOBZ, UPLO, N, KD, AB, LDAB, WORK( INDD ),
  428:      $             WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
  429: *
  430: *     If all eigenvalues are desired and ABSTOL is less than or equal
  431: *     to zero, then call DSTERF or SSTEQR.  If this fails for some
  432: *     eigenvalue, then try DSTEBZ.
  433: *
  434:       TEST = .FALSE.
  435:       IF (INDEIG) THEN
  436:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  437:             TEST = .TRUE.
  438:          END IF
  439:       END IF
  440:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  441:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
  442:          INDEE = INDWRK + 2*N
  443:          IF( .NOT.WANTZ ) THEN
  444:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  445:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
  446:          ELSE
  447:             CALL DLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
  448:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  449:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
  450:      $                   WORK( INDWRK ), INFO )
  451:             IF( INFO.EQ.0 ) THEN
  452:                DO 10 I = 1, N
  453:                   IFAIL( I ) = 0
  454:    10          CONTINUE
  455:             END IF
  456:          END IF
  457:          IF( INFO.EQ.0 ) THEN
  458:             M = N
  459:             GO TO 30
  460:          END IF
  461:          INFO = 0
  462:       END IF
  463: *
  464: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
  465: *
  466:       IF( WANTZ ) THEN
  467:          ORDER = 'B'
  468:       ELSE
  469:          ORDER = 'E'
  470:       END IF
  471:       INDIBL = 1
  472:       INDISP = INDIBL + N
  473:       INDIWO = INDISP + N
  474:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  475:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  476:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
  477:      $             IWORK( INDIWO ), INFO )
  478: *
  479:       IF( WANTZ ) THEN
  480:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  481:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  482:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
  483: *
  484: *        Apply orthogonal matrix used in reduction to tridiagonal
  485: *        form to eigenvectors returned by DSTEIN.
  486: *
  487:          DO 20 J = 1, M
  488:             CALL DCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
  489:             CALL DGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
  490:      $                  Z( 1, J ), 1 )
  491:    20    CONTINUE
  492:       END IF
  493: *
  494: *     If matrix was scaled, then rescale eigenvalues appropriately.
  495: *
  496:    30 CONTINUE
  497:       IF( ISCALE.EQ.1 ) THEN
  498:          IF( INFO.EQ.0 ) THEN
  499:             IMAX = M
  500:          ELSE
  501:             IMAX = INFO - 1
  502:          END IF
  503:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  504:       END IF
  505: *
  506: *     If eigenvalues are not in order, then sort them, along with
  507: *     eigenvectors.
  508: *
  509:       IF( WANTZ ) THEN
  510:          DO 50 J = 1, M - 1
  511:             I = 0
  512:             TMP1 = W( J )
  513:             DO 40 JJ = J + 1, M
  514:                IF( W( JJ ).LT.TMP1 ) THEN
  515:                   I = JJ
  516:                   TMP1 = W( JJ )
  517:                END IF
  518:    40       CONTINUE
  519: *
  520:             IF( I.NE.0 ) THEN
  521:                ITMP1 = IWORK( INDIBL+I-1 )
  522:                W( I ) = W( J )
  523:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  524:                W( J ) = TMP1
  525:                IWORK( INDIBL+J-1 ) = ITMP1
  526:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  527:                IF( INFO.NE.0 ) THEN
  528:                   ITMP1 = IFAIL( I )
  529:                   IFAIL( I ) = IFAIL( J )
  530:                   IFAIL( J ) = ITMP1
  531:                END IF
  532:             END IF
  533:    50    CONTINUE
  534:       END IF
  535: *
  536:       RETURN
  537: *
  538: *     End of DSBEVX
  539: *
  540:       END

CVSweb interface <joel.bertrand@systella.fr>