File:  [local] / rpl / lapack / lapack / dsbevx.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:24 2012 UTC (11 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief <b> DSBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DSBEVX + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbevx.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbevx.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbevx.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
   22: *                          VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
   23: *                          IFAIL, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
   28: *       DOUBLE PRECISION   ABSTOL, VL, VU
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IFAIL( * ), IWORK( * )
   32: *       DOUBLE PRECISION   AB( LDAB, * ), Q( LDQ, * ), W( * ), WORK( * ),
   33: *      $                   Z( LDZ, * )
   34: *       ..
   35: *  
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DSBEVX computes selected eigenvalues and, optionally, eigenvectors
   43: *> of a real symmetric band matrix A.  Eigenvalues and eigenvectors can
   44: *> be selected by specifying either a range of values or a range of
   45: *> indices for the desired eigenvalues.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] JOBZ
   52: *> \verbatim
   53: *>          JOBZ is CHARACTER*1
   54: *>          = 'N':  Compute eigenvalues only;
   55: *>          = 'V':  Compute eigenvalues and eigenvectors.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] RANGE
   59: *> \verbatim
   60: *>          RANGE is CHARACTER*1
   61: *>          = 'A': all eigenvalues will be found;
   62: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   63: *>                 will be found;
   64: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] UPLO
   68: *> \verbatim
   69: *>          UPLO is CHARACTER*1
   70: *>          = 'U':  Upper triangle of A is stored;
   71: *>          = 'L':  Lower triangle of A is stored.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] N
   75: *> \verbatim
   76: *>          N is INTEGER
   77: *>          The order of the matrix A.  N >= 0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] KD
   81: *> \verbatim
   82: *>          KD is INTEGER
   83: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
   84: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   85: *> \endverbatim
   86: *>
   87: *> \param[in,out] AB
   88: *> \verbatim
   89: *>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
   90: *>          On entry, the upper or lower triangle of the symmetric band
   91: *>          matrix A, stored in the first KD+1 rows of the array.  The
   92: *>          j-th column of A is stored in the j-th column of the array AB
   93: *>          as follows:
   94: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   95: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   96: *>
   97: *>          On exit, AB is overwritten by values generated during the
   98: *>          reduction to tridiagonal form.  If UPLO = 'U', the first
   99: *>          superdiagonal and the diagonal of the tridiagonal matrix T
  100: *>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
  101: *>          the diagonal and first subdiagonal of T are returned in the
  102: *>          first two rows of AB.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] LDAB
  106: *> \verbatim
  107: *>          LDAB is INTEGER
  108: *>          The leading dimension of the array AB.  LDAB >= KD + 1.
  109: *> \endverbatim
  110: *>
  111: *> \param[out] Q
  112: *> \verbatim
  113: *>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
  114: *>          If JOBZ = 'V', the N-by-N orthogonal matrix used in the
  115: *>                         reduction to tridiagonal form.
  116: *>          If JOBZ = 'N', the array Q is not referenced.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] LDQ
  120: *> \verbatim
  121: *>          LDQ is INTEGER
  122: *>          The leading dimension of the array Q.  If JOBZ = 'V', then
  123: *>          LDQ >= max(1,N).
  124: *> \endverbatim
  125: *>
  126: *> \param[in] VL
  127: *> \verbatim
  128: *>          VL is DOUBLE PRECISION
  129: *> \endverbatim
  130: *>
  131: *> \param[in] VU
  132: *> \verbatim
  133: *>          VU is DOUBLE PRECISION
  134: *>          If RANGE='V', the lower and upper bounds of the interval to
  135: *>          be searched for eigenvalues. VL < VU.
  136: *>          Not referenced if RANGE = 'A' or 'I'.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] IL
  140: *> \verbatim
  141: *>          IL is INTEGER
  142: *> \endverbatim
  143: *>
  144: *> \param[in] IU
  145: *> \verbatim
  146: *>          IU is INTEGER
  147: *>          If RANGE='I', the indices (in ascending order) of the
  148: *>          smallest and largest eigenvalues to be returned.
  149: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  150: *>          Not referenced if RANGE = 'A' or 'V'.
  151: *> \endverbatim
  152: *>
  153: *> \param[in] ABSTOL
  154: *> \verbatim
  155: *>          ABSTOL is DOUBLE PRECISION
  156: *>          The absolute error tolerance for the eigenvalues.
  157: *>          An approximate eigenvalue is accepted as converged
  158: *>          when it is determined to lie in an interval [a,b]
  159: *>          of width less than or equal to
  160: *>
  161: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  162: *>
  163: *>          where EPS is the machine precision.  If ABSTOL is less than
  164: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  165: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  166: *>          by reducing AB to tridiagonal form.
  167: *>
  168: *>          Eigenvalues will be computed most accurately when ABSTOL is
  169: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  170: *>          If this routine returns with INFO>0, indicating that some
  171: *>          eigenvectors did not converge, try setting ABSTOL to
  172: *>          2*DLAMCH('S').
  173: *>
  174: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  175: *>          with Guaranteed High Relative Accuracy," by Demmel and
  176: *>          Kahan, LAPACK Working Note #3.
  177: *> \endverbatim
  178: *>
  179: *> \param[out] M
  180: *> \verbatim
  181: *>          M is INTEGER
  182: *>          The total number of eigenvalues found.  0 <= M <= N.
  183: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  184: *> \endverbatim
  185: *>
  186: *> \param[out] W
  187: *> \verbatim
  188: *>          W is DOUBLE PRECISION array, dimension (N)
  189: *>          The first M elements contain the selected eigenvalues in
  190: *>          ascending order.
  191: *> \endverbatim
  192: *>
  193: *> \param[out] Z
  194: *> \verbatim
  195: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
  196: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  197: *>          contain the orthonormal eigenvectors of the matrix A
  198: *>          corresponding to the selected eigenvalues, with the i-th
  199: *>          column of Z holding the eigenvector associated with W(i).
  200: *>          If an eigenvector fails to converge, then that column of Z
  201: *>          contains the latest approximation to the eigenvector, and the
  202: *>          index of the eigenvector is returned in IFAIL.
  203: *>          If JOBZ = 'N', then Z is not referenced.
  204: *>          Note: the user must ensure that at least max(1,M) columns are
  205: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  206: *>          is not known in advance and an upper bound must be used.
  207: *> \endverbatim
  208: *>
  209: *> \param[in] LDZ
  210: *> \verbatim
  211: *>          LDZ is INTEGER
  212: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  213: *>          JOBZ = 'V', LDZ >= max(1,N).
  214: *> \endverbatim
  215: *>
  216: *> \param[out] WORK
  217: *> \verbatim
  218: *>          WORK is DOUBLE PRECISION array, dimension (7*N)
  219: *> \endverbatim
  220: *>
  221: *> \param[out] IWORK
  222: *> \verbatim
  223: *>          IWORK is INTEGER array, dimension (5*N)
  224: *> \endverbatim
  225: *>
  226: *> \param[out] IFAIL
  227: *> \verbatim
  228: *>          IFAIL is INTEGER array, dimension (N)
  229: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  230: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  231: *>          indices of the eigenvectors that failed to converge.
  232: *>          If JOBZ = 'N', then IFAIL is not referenced.
  233: *> \endverbatim
  234: *>
  235: *> \param[out] INFO
  236: *> \verbatim
  237: *>          INFO is INTEGER
  238: *>          = 0:  successful exit.
  239: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  240: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
  241: *>                Their indices are stored in array IFAIL.
  242: *> \endverbatim
  243: *
  244: *  Authors:
  245: *  ========
  246: *
  247: *> \author Univ. of Tennessee 
  248: *> \author Univ. of California Berkeley 
  249: *> \author Univ. of Colorado Denver 
  250: *> \author NAG Ltd. 
  251: *
  252: *> \date November 2011
  253: *
  254: *> \ingroup doubleOTHEReigen
  255: *
  256: *  =====================================================================
  257:       SUBROUTINE DSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
  258:      $                   VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
  259:      $                   IFAIL, INFO )
  260: *
  261: *  -- LAPACK driver routine (version 3.4.0) --
  262: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  263: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  264: *     November 2011
  265: *
  266: *     .. Scalar Arguments ..
  267:       CHARACTER          JOBZ, RANGE, UPLO
  268:       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
  269:       DOUBLE PRECISION   ABSTOL, VL, VU
  270: *     ..
  271: *     .. Array Arguments ..
  272:       INTEGER            IFAIL( * ), IWORK( * )
  273:       DOUBLE PRECISION   AB( LDAB, * ), Q( LDQ, * ), W( * ), WORK( * ),
  274:      $                   Z( LDZ, * )
  275: *     ..
  276: *
  277: *  =====================================================================
  278: *
  279: *     .. Parameters ..
  280:       DOUBLE PRECISION   ZERO, ONE
  281:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  282: *     ..
  283: *     .. Local Scalars ..
  284:       LOGICAL            ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ
  285:       CHARACTER          ORDER
  286:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  287:      $                   INDISP, INDIWO, INDWRK, ISCALE, ITMP1, J, JJ,
  288:      $                   NSPLIT
  289:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  290:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  291: *     ..
  292: *     .. External Functions ..
  293:       LOGICAL            LSAME
  294:       DOUBLE PRECISION   DLAMCH, DLANSB
  295:       EXTERNAL           LSAME, DLAMCH, DLANSB
  296: *     ..
  297: *     .. External Subroutines ..
  298:       EXTERNAL           DCOPY, DGEMV, DLACPY, DLASCL, DSBTRD, DSCAL,
  299:      $                   DSTEBZ, DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
  300: *     ..
  301: *     .. Intrinsic Functions ..
  302:       INTRINSIC          MAX, MIN, SQRT
  303: *     ..
  304: *     .. Executable Statements ..
  305: *
  306: *     Test the input parameters.
  307: *
  308:       WANTZ = LSAME( JOBZ, 'V' )
  309:       ALLEIG = LSAME( RANGE, 'A' )
  310:       VALEIG = LSAME( RANGE, 'V' )
  311:       INDEIG = LSAME( RANGE, 'I' )
  312:       LOWER = LSAME( UPLO, 'L' )
  313: *
  314:       INFO = 0
  315:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  316:          INFO = -1
  317:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  318:          INFO = -2
  319:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  320:          INFO = -3
  321:       ELSE IF( N.LT.0 ) THEN
  322:          INFO = -4
  323:       ELSE IF( KD.LT.0 ) THEN
  324:          INFO = -5
  325:       ELSE IF( LDAB.LT.KD+1 ) THEN
  326:          INFO = -7
  327:       ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
  328:          INFO = -9
  329:       ELSE
  330:          IF( VALEIG ) THEN
  331:             IF( N.GT.0 .AND. VU.LE.VL )
  332:      $         INFO = -11
  333:          ELSE IF( INDEIG ) THEN
  334:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  335:                INFO = -12
  336:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  337:                INFO = -13
  338:             END IF
  339:          END IF
  340:       END IF
  341:       IF( INFO.EQ.0 ) THEN
  342:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  343:      $      INFO = -18
  344:       END IF
  345: *
  346:       IF( INFO.NE.0 ) THEN
  347:          CALL XERBLA( 'DSBEVX', -INFO )
  348:          RETURN
  349:       END IF
  350: *
  351: *     Quick return if possible
  352: *
  353:       M = 0
  354:       IF( N.EQ.0 )
  355:      $   RETURN
  356: *
  357:       IF( N.EQ.1 ) THEN
  358:          M = 1
  359:          IF( LOWER ) THEN
  360:             TMP1 = AB( 1, 1 )
  361:          ELSE
  362:             TMP1 = AB( KD+1, 1 )
  363:          END IF
  364:          IF( VALEIG ) THEN
  365:             IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
  366:      $         M = 0
  367:          END IF
  368:          IF( M.EQ.1 ) THEN
  369:             W( 1 ) = TMP1
  370:             IF( WANTZ )
  371:      $         Z( 1, 1 ) = ONE
  372:          END IF
  373:          RETURN
  374:       END IF
  375: *
  376: *     Get machine constants.
  377: *
  378:       SAFMIN = DLAMCH( 'Safe minimum' )
  379:       EPS = DLAMCH( 'Precision' )
  380:       SMLNUM = SAFMIN / EPS
  381:       BIGNUM = ONE / SMLNUM
  382:       RMIN = SQRT( SMLNUM )
  383:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  384: *
  385: *     Scale matrix to allowable range, if necessary.
  386: *
  387:       ISCALE = 0
  388:       ABSTLL = ABSTOL
  389:       IF( VALEIG ) THEN
  390:          VLL = VL
  391:          VUU = VU
  392:       ELSE
  393:          VLL = ZERO
  394:          VUU = ZERO
  395:       END IF
  396:       ANRM = DLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
  397:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  398:          ISCALE = 1
  399:          SIGMA = RMIN / ANRM
  400:       ELSE IF( ANRM.GT.RMAX ) THEN
  401:          ISCALE = 1
  402:          SIGMA = RMAX / ANRM
  403:       END IF
  404:       IF( ISCALE.EQ.1 ) THEN
  405:          IF( LOWER ) THEN
  406:             CALL DLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  407:          ELSE
  408:             CALL DLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  409:          END IF
  410:          IF( ABSTOL.GT.0 )
  411:      $      ABSTLL = ABSTOL*SIGMA
  412:          IF( VALEIG ) THEN
  413:             VLL = VL*SIGMA
  414:             VUU = VU*SIGMA
  415:          END IF
  416:       END IF
  417: *
  418: *     Call DSBTRD to reduce symmetric band matrix to tridiagonal form.
  419: *
  420:       INDD = 1
  421:       INDE = INDD + N
  422:       INDWRK = INDE + N
  423:       CALL DSBTRD( JOBZ, UPLO, N, KD, AB, LDAB, WORK( INDD ),
  424:      $             WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
  425: *
  426: *     If all eigenvalues are desired and ABSTOL is less than or equal
  427: *     to zero, then call DSTERF or SSTEQR.  If this fails for some
  428: *     eigenvalue, then try DSTEBZ.
  429: *
  430:       TEST = .FALSE.
  431:       IF (INDEIG) THEN
  432:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  433:             TEST = .TRUE.
  434:          END IF
  435:       END IF
  436:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  437:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
  438:          INDEE = INDWRK + 2*N
  439:          IF( .NOT.WANTZ ) THEN
  440:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  441:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
  442:          ELSE
  443:             CALL DLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
  444:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  445:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
  446:      $                   WORK( INDWRK ), INFO )
  447:             IF( INFO.EQ.0 ) THEN
  448:                DO 10 I = 1, N
  449:                   IFAIL( I ) = 0
  450:    10          CONTINUE
  451:             END IF
  452:          END IF
  453:          IF( INFO.EQ.0 ) THEN
  454:             M = N
  455:             GO TO 30
  456:          END IF
  457:          INFO = 0
  458:       END IF
  459: *
  460: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
  461: *
  462:       IF( WANTZ ) THEN
  463:          ORDER = 'B'
  464:       ELSE
  465:          ORDER = 'E'
  466:       END IF
  467:       INDIBL = 1
  468:       INDISP = INDIBL + N
  469:       INDIWO = INDISP + N
  470:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  471:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  472:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
  473:      $             IWORK( INDIWO ), INFO )
  474: *
  475:       IF( WANTZ ) THEN
  476:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  477:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  478:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
  479: *
  480: *        Apply orthogonal matrix used in reduction to tridiagonal
  481: *        form to eigenvectors returned by DSTEIN.
  482: *
  483:          DO 20 J = 1, M
  484:             CALL DCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
  485:             CALL DGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
  486:      $                  Z( 1, J ), 1 )
  487:    20    CONTINUE
  488:       END IF
  489: *
  490: *     If matrix was scaled, then rescale eigenvalues appropriately.
  491: *
  492:    30 CONTINUE
  493:       IF( ISCALE.EQ.1 ) THEN
  494:          IF( INFO.EQ.0 ) THEN
  495:             IMAX = M
  496:          ELSE
  497:             IMAX = INFO - 1
  498:          END IF
  499:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  500:       END IF
  501: *
  502: *     If eigenvalues are not in order, then sort them, along with
  503: *     eigenvectors.
  504: *
  505:       IF( WANTZ ) THEN
  506:          DO 50 J = 1, M - 1
  507:             I = 0
  508:             TMP1 = W( J )
  509:             DO 40 JJ = J + 1, M
  510:                IF( W( JJ ).LT.TMP1 ) THEN
  511:                   I = JJ
  512:                   TMP1 = W( JJ )
  513:                END IF
  514:    40       CONTINUE
  515: *
  516:             IF( I.NE.0 ) THEN
  517:                ITMP1 = IWORK( INDIBL+I-1 )
  518:                W( I ) = W( J )
  519:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  520:                W( J ) = TMP1
  521:                IWORK( INDIBL+J-1 ) = ITMP1
  522:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  523:                IF( INFO.NE.0 ) THEN
  524:                   ITMP1 = IFAIL( I )
  525:                   IFAIL( I ) = IFAIL( J )
  526:                   IFAIL( J ) = ITMP1
  527:                END IF
  528:             END IF
  529:    50    CONTINUE
  530:       END IF
  531: *
  532:       RETURN
  533: *
  534: *     End of DSBEVX
  535: *
  536:       END

CVSweb interface <joel.bertrand@systella.fr>