Annotation of rpl/lapack/lapack/dsbevx.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE DSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
                      2:      $                   VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
                      3:      $                   IFAIL, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBZ, RANGE, UPLO
                     12:       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
                     13:       DOUBLE PRECISION   ABSTOL, VL, VU
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IFAIL( * ), IWORK( * )
                     17:       DOUBLE PRECISION   AB( LDAB, * ), Q( LDQ, * ), W( * ), WORK( * ),
                     18:      $                   Z( LDZ, * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  DSBEVX computes selected eigenvalues and, optionally, eigenvectors
                     25: *  of a real symmetric band matrix A.  Eigenvalues and eigenvectors can
                     26: *  be selected by specifying either a range of values or a range of
                     27: *  indices for the desired eigenvalues.
                     28: *
                     29: *  Arguments
                     30: *  =========
                     31: *
                     32: *  JOBZ    (input) CHARACTER*1
                     33: *          = 'N':  Compute eigenvalues only;
                     34: *          = 'V':  Compute eigenvalues and eigenvectors.
                     35: *
                     36: *  RANGE   (input) CHARACTER*1
                     37: *          = 'A': all eigenvalues will be found;
                     38: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     39: *                 will be found;
                     40: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     41: *
                     42: *  UPLO    (input) CHARACTER*1
                     43: *          = 'U':  Upper triangle of A is stored;
                     44: *          = 'L':  Lower triangle of A is stored.
                     45: *
                     46: *  N       (input) INTEGER
                     47: *          The order of the matrix A.  N >= 0.
                     48: *
                     49: *  KD      (input) INTEGER
                     50: *          The number of superdiagonals of the matrix A if UPLO = 'U',
                     51: *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     52: *
                     53: *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
                     54: *          On entry, the upper or lower triangle of the symmetric band
                     55: *          matrix A, stored in the first KD+1 rows of the array.  The
                     56: *          j-th column of A is stored in the j-th column of the array AB
                     57: *          as follows:
                     58: *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     59: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     60: *
                     61: *          On exit, AB is overwritten by values generated during the
                     62: *          reduction to tridiagonal form.  If UPLO = 'U', the first
                     63: *          superdiagonal and the diagonal of the tridiagonal matrix T
                     64: *          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
                     65: *          the diagonal and first subdiagonal of T are returned in the
                     66: *          first two rows of AB.
                     67: *
                     68: *  LDAB    (input) INTEGER
                     69: *          The leading dimension of the array AB.  LDAB >= KD + 1.
                     70: *
                     71: *  Q       (output) DOUBLE PRECISION array, dimension (LDQ, N)
                     72: *          If JOBZ = 'V', the N-by-N orthogonal matrix used in the
                     73: *                         reduction to tridiagonal form.
                     74: *          If JOBZ = 'N', the array Q is not referenced.
                     75: *
                     76: *  LDQ     (input) INTEGER
                     77: *          The leading dimension of the array Q.  If JOBZ = 'V', then
                     78: *          LDQ >= max(1,N).
                     79: *
                     80: *  VL      (input) DOUBLE PRECISION
                     81: *  VU      (input) DOUBLE PRECISION
                     82: *          If RANGE='V', the lower and upper bounds of the interval to
                     83: *          be searched for eigenvalues. VL < VU.
                     84: *          Not referenced if RANGE = 'A' or 'I'.
                     85: *
                     86: *  IL      (input) INTEGER
                     87: *  IU      (input) INTEGER
                     88: *          If RANGE='I', the indices (in ascending order) of the
                     89: *          smallest and largest eigenvalues to be returned.
                     90: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                     91: *          Not referenced if RANGE = 'A' or 'V'.
                     92: *
                     93: *  ABSTOL  (input) DOUBLE PRECISION
                     94: *          The absolute error tolerance for the eigenvalues.
                     95: *          An approximate eigenvalue is accepted as converged
                     96: *          when it is determined to lie in an interval [a,b]
                     97: *          of width less than or equal to
                     98: *
                     99: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    100: *
                    101: *          where EPS is the machine precision.  If ABSTOL is less than
                    102: *          or equal to zero, then  EPS*|T|  will be used in its place,
                    103: *          where |T| is the 1-norm of the tridiagonal matrix obtained
                    104: *          by reducing AB to tridiagonal form.
                    105: *
                    106: *          Eigenvalues will be computed most accurately when ABSTOL is
                    107: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    108: *          If this routine returns with INFO>0, indicating that some
                    109: *          eigenvectors did not converge, try setting ABSTOL to
                    110: *          2*DLAMCH('S').
                    111: *
                    112: *          See "Computing Small Singular Values of Bidiagonal Matrices
                    113: *          with Guaranteed High Relative Accuracy," by Demmel and
                    114: *          Kahan, LAPACK Working Note #3.
                    115: *
                    116: *  M       (output) INTEGER
                    117: *          The total number of eigenvalues found.  0 <= M <= N.
                    118: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    119: *
                    120: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    121: *          The first M elements contain the selected eigenvalues in
                    122: *          ascending order.
                    123: *
                    124: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
                    125: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    126: *          contain the orthonormal eigenvectors of the matrix A
                    127: *          corresponding to the selected eigenvalues, with the i-th
                    128: *          column of Z holding the eigenvector associated with W(i).
                    129: *          If an eigenvector fails to converge, then that column of Z
                    130: *          contains the latest approximation to the eigenvector, and the
                    131: *          index of the eigenvector is returned in IFAIL.
                    132: *          If JOBZ = 'N', then Z is not referenced.
                    133: *          Note: the user must ensure that at least max(1,M) columns are
                    134: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    135: *          is not known in advance and an upper bound must be used.
                    136: *
                    137: *  LDZ     (input) INTEGER
                    138: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    139: *          JOBZ = 'V', LDZ >= max(1,N).
                    140: *
                    141: *  WORK    (workspace) DOUBLE PRECISION array, dimension (7*N)
                    142: *
                    143: *  IWORK   (workspace) INTEGER array, dimension (5*N)
                    144: *
                    145: *  IFAIL   (output) INTEGER array, dimension (N)
                    146: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    147: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    148: *          indices of the eigenvectors that failed to converge.
                    149: *          If JOBZ = 'N', then IFAIL is not referenced.
                    150: *
                    151: *  INFO    (output) INTEGER
                    152: *          = 0:  successful exit.
                    153: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    154: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    155: *                Their indices are stored in array IFAIL.
                    156: *
                    157: *  =====================================================================
                    158: *
                    159: *     .. Parameters ..
                    160:       DOUBLE PRECISION   ZERO, ONE
                    161:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    162: *     ..
                    163: *     .. Local Scalars ..
                    164:       LOGICAL            ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ
                    165:       CHARACTER          ORDER
                    166:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    167:      $                   INDISP, INDIWO, INDWRK, ISCALE, ITMP1, J, JJ,
                    168:      $                   NSPLIT
                    169:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    170:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    171: *     ..
                    172: *     .. External Functions ..
                    173:       LOGICAL            LSAME
                    174:       DOUBLE PRECISION   DLAMCH, DLANSB
                    175:       EXTERNAL           LSAME, DLAMCH, DLANSB
                    176: *     ..
                    177: *     .. External Subroutines ..
                    178:       EXTERNAL           DCOPY, DGEMV, DLACPY, DLASCL, DSBTRD, DSCAL,
                    179:      $                   DSTEBZ, DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
                    180: *     ..
                    181: *     .. Intrinsic Functions ..
                    182:       INTRINSIC          MAX, MIN, SQRT
                    183: *     ..
                    184: *     .. Executable Statements ..
                    185: *
                    186: *     Test the input parameters.
                    187: *
                    188:       WANTZ = LSAME( JOBZ, 'V' )
                    189:       ALLEIG = LSAME( RANGE, 'A' )
                    190:       VALEIG = LSAME( RANGE, 'V' )
                    191:       INDEIG = LSAME( RANGE, 'I' )
                    192:       LOWER = LSAME( UPLO, 'L' )
                    193: *
                    194:       INFO = 0
                    195:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    196:          INFO = -1
                    197:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    198:          INFO = -2
                    199:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    200:          INFO = -3
                    201:       ELSE IF( N.LT.0 ) THEN
                    202:          INFO = -4
                    203:       ELSE IF( KD.LT.0 ) THEN
                    204:          INFO = -5
                    205:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    206:          INFO = -7
                    207:       ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
                    208:          INFO = -9
                    209:       ELSE
                    210:          IF( VALEIG ) THEN
                    211:             IF( N.GT.0 .AND. VU.LE.VL )
                    212:      $         INFO = -11
                    213:          ELSE IF( INDEIG ) THEN
                    214:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    215:                INFO = -12
                    216:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    217:                INFO = -13
                    218:             END IF
                    219:          END IF
                    220:       END IF
                    221:       IF( INFO.EQ.0 ) THEN
                    222:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
                    223:      $      INFO = -18
                    224:       END IF
                    225: *
                    226:       IF( INFO.NE.0 ) THEN
                    227:          CALL XERBLA( 'DSBEVX', -INFO )
                    228:          RETURN
                    229:       END IF
                    230: *
                    231: *     Quick return if possible
                    232: *
                    233:       M = 0
                    234:       IF( N.EQ.0 )
                    235:      $   RETURN
                    236: *
                    237:       IF( N.EQ.1 ) THEN
                    238:          M = 1
                    239:          IF( LOWER ) THEN
                    240:             TMP1 = AB( 1, 1 )
                    241:          ELSE
                    242:             TMP1 = AB( KD+1, 1 )
                    243:          END IF
                    244:          IF( VALEIG ) THEN
                    245:             IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
                    246:      $         M = 0
                    247:          END IF
                    248:          IF( M.EQ.1 ) THEN
                    249:             W( 1 ) = TMP1
                    250:             IF( WANTZ )
                    251:      $         Z( 1, 1 ) = ONE
                    252:          END IF
                    253:          RETURN
                    254:       END IF
                    255: *
                    256: *     Get machine constants.
                    257: *
                    258:       SAFMIN = DLAMCH( 'Safe minimum' )
                    259:       EPS = DLAMCH( 'Precision' )
                    260:       SMLNUM = SAFMIN / EPS
                    261:       BIGNUM = ONE / SMLNUM
                    262:       RMIN = SQRT( SMLNUM )
                    263:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    264: *
                    265: *     Scale matrix to allowable range, if necessary.
                    266: *
                    267:       ISCALE = 0
                    268:       ABSTLL = ABSTOL
                    269:       IF( VALEIG ) THEN
                    270:          VLL = VL
                    271:          VUU = VU
                    272:       ELSE
                    273:          VLL = ZERO
                    274:          VUU = ZERO
                    275:       END IF
                    276:       ANRM = DLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
                    277:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    278:          ISCALE = 1
                    279:          SIGMA = RMIN / ANRM
                    280:       ELSE IF( ANRM.GT.RMAX ) THEN
                    281:          ISCALE = 1
                    282:          SIGMA = RMAX / ANRM
                    283:       END IF
                    284:       IF( ISCALE.EQ.1 ) THEN
                    285:          IF( LOWER ) THEN
                    286:             CALL DLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    287:          ELSE
                    288:             CALL DLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    289:          END IF
                    290:          IF( ABSTOL.GT.0 )
                    291:      $      ABSTLL = ABSTOL*SIGMA
                    292:          IF( VALEIG ) THEN
                    293:             VLL = VL*SIGMA
                    294:             VUU = VU*SIGMA
                    295:          END IF
                    296:       END IF
                    297: *
                    298: *     Call DSBTRD to reduce symmetric band matrix to tridiagonal form.
                    299: *
                    300:       INDD = 1
                    301:       INDE = INDD + N
                    302:       INDWRK = INDE + N
                    303:       CALL DSBTRD( JOBZ, UPLO, N, KD, AB, LDAB, WORK( INDD ),
                    304:      $             WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
                    305: *
                    306: *     If all eigenvalues are desired and ABSTOL is less than or equal
                    307: *     to zero, then call DSTERF or SSTEQR.  If this fails for some
                    308: *     eigenvalue, then try DSTEBZ.
                    309: *
                    310:       TEST = .FALSE.
                    311:       IF (INDEIG) THEN
                    312:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
                    313:             TEST = .TRUE.
                    314:          END IF
                    315:       END IF
                    316:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
                    317:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
                    318:          INDEE = INDWRK + 2*N
                    319:          IF( .NOT.WANTZ ) THEN
                    320:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    321:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
                    322:          ELSE
                    323:             CALL DLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
                    324:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    325:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
                    326:      $                   WORK( INDWRK ), INFO )
                    327:             IF( INFO.EQ.0 ) THEN
                    328:                DO 10 I = 1, N
                    329:                   IFAIL( I ) = 0
                    330:    10          CONTINUE
                    331:             END IF
                    332:          END IF
                    333:          IF( INFO.EQ.0 ) THEN
                    334:             M = N
                    335:             GO TO 30
                    336:          END IF
                    337:          INFO = 0
                    338:       END IF
                    339: *
                    340: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
                    341: *
                    342:       IF( WANTZ ) THEN
                    343:          ORDER = 'B'
                    344:       ELSE
                    345:          ORDER = 'E'
                    346:       END IF
                    347:       INDIBL = 1
                    348:       INDISP = INDIBL + N
                    349:       INDIWO = INDISP + N
                    350:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    351:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
                    352:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
                    353:      $             IWORK( INDIWO ), INFO )
                    354: *
                    355:       IF( WANTZ ) THEN
                    356:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
                    357:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    358:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
                    359: *
                    360: *        Apply orthogonal matrix used in reduction to tridiagonal
                    361: *        form to eigenvectors returned by DSTEIN.
                    362: *
                    363:          DO 20 J = 1, M
                    364:             CALL DCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
                    365:             CALL DGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
                    366:      $                  Z( 1, J ), 1 )
                    367:    20    CONTINUE
                    368:       END IF
                    369: *
                    370: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    371: *
                    372:    30 CONTINUE
                    373:       IF( ISCALE.EQ.1 ) THEN
                    374:          IF( INFO.EQ.0 ) THEN
                    375:             IMAX = M
                    376:          ELSE
                    377:             IMAX = INFO - 1
                    378:          END IF
                    379:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    380:       END IF
                    381: *
                    382: *     If eigenvalues are not in order, then sort them, along with
                    383: *     eigenvectors.
                    384: *
                    385:       IF( WANTZ ) THEN
                    386:          DO 50 J = 1, M - 1
                    387:             I = 0
                    388:             TMP1 = W( J )
                    389:             DO 40 JJ = J + 1, M
                    390:                IF( W( JJ ).LT.TMP1 ) THEN
                    391:                   I = JJ
                    392:                   TMP1 = W( JJ )
                    393:                END IF
                    394:    40       CONTINUE
                    395: *
                    396:             IF( I.NE.0 ) THEN
                    397:                ITMP1 = IWORK( INDIBL+I-1 )
                    398:                W( I ) = W( J )
                    399:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    400:                W( J ) = TMP1
                    401:                IWORK( INDIBL+J-1 ) = ITMP1
                    402:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    403:                IF( INFO.NE.0 ) THEN
                    404:                   ITMP1 = IFAIL( I )
                    405:                   IFAIL( I ) = IFAIL( J )
                    406:                   IFAIL( J ) = ITMP1
                    407:                END IF
                    408:             END IF
                    409:    50    CONTINUE
                    410:       END IF
                    411: *
                    412:       RETURN
                    413: *
                    414: *     End of DSBEVX
                    415: *
                    416:       END

CVSweb interface <joel.bertrand@systella.fr>