Annotation of rpl/lapack/lapack/dsbevd_2stage.f, revision 1.5

1.1       bertrand    1: *> \brief <b> DSBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
                      2: *
                      3: *  @precisions fortran d -> s
                      4: *
                      5: *  =========== DOCUMENTATION ===========
                      6: *
                      7: * Online html documentation available at
                      8: *            http://www.netlib.org/lapack/explore-html/
                      9: *
                     10: *> \htmlonly
                     11: *> Download DSBEVD_2STAGE + dependencies
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbevd_2stage.f">
                     13: *> [TGZ]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbevd_2stage.f">
                     15: *> [ZIP]</a>
                     16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbevd_2stage.f">
                     17: *> [TXT]</a>
                     18: *> \endhtmlonly
                     19: *
                     20: *  Definition:
                     21: *  ===========
                     22: *
                     23: *       SUBROUTINE DSBEVD_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
                     24: *                                 WORK, LWORK, IWORK, LIWORK, INFO )
                     25: *
                     26: *       IMPLICIT NONE
                     27: *
                     28: *       .. Scalar Arguments ..
                     29: *       CHARACTER          JOBZ, UPLO
                     30: *       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
                     31: *       ..
                     32: *       .. Array Arguments ..
                     33: *       INTEGER            IWORK( * )
                     34: *       DOUBLE PRECISION   AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
                     35: *       ..
                     36: *
                     37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> DSBEVD_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
                     44: *> a real symmetric band matrix A using the 2stage technique for
                     45: *> the reduction to tridiagonal. If eigenvectors are desired, it uses
                     46: *> a divide and conquer algorithm.
                     47: *>
                     48: *> The divide and conquer algorithm makes very mild assumptions about
                     49: *> floating point arithmetic. It will work on machines with a guard
                     50: *> digit in add/subtract, or on those binary machines without guard
                     51: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     52: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     53: *> without guard digits, but we know of none.
                     54: *> \endverbatim
                     55: *
                     56: *  Arguments:
                     57: *  ==========
                     58: *
                     59: *> \param[in] JOBZ
                     60: *> \verbatim
                     61: *>          JOBZ is CHARACTER*1
                     62: *>          = 'N':  Compute eigenvalues only;
                     63: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     64: *>                  Not available in this release.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] UPLO
                     68: *> \verbatim
                     69: *>          UPLO is CHARACTER*1
                     70: *>          = 'U':  Upper triangle of A is stored;
                     71: *>          = 'L':  Lower triangle of A is stored.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] N
                     75: *> \verbatim
                     76: *>          N is INTEGER
                     77: *>          The order of the matrix A.  N >= 0.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] KD
                     81: *> \verbatim
                     82: *>          KD is INTEGER
                     83: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     84: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in,out] AB
                     88: *> \verbatim
                     89: *>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
                     90: *>          On entry, the upper or lower triangle of the symmetric band
                     91: *>          matrix A, stored in the first KD+1 rows of the array.  The
                     92: *>          j-th column of A is stored in the j-th column of the array AB
                     93: *>          as follows:
                     94: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     95: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     96: *>
                     97: *>          On exit, AB is overwritten by values generated during the
                     98: *>          reduction to tridiagonal form.  If UPLO = 'U', the first
                     99: *>          superdiagonal and the diagonal of the tridiagonal matrix T
                    100: *>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
                    101: *>          the diagonal and first subdiagonal of T are returned in the
                    102: *>          first two rows of AB.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] LDAB
                    106: *> \verbatim
                    107: *>          LDAB is INTEGER
                    108: *>          The leading dimension of the array AB.  LDAB >= KD + 1.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[out] W
                    112: *> \verbatim
                    113: *>          W is DOUBLE PRECISION array, dimension (N)
                    114: *>          If INFO = 0, the eigenvalues in ascending order.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[out] Z
                    118: *> \verbatim
                    119: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
                    120: *>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                    121: *>          eigenvectors of the matrix A, with the i-th column of Z
                    122: *>          holding the eigenvector associated with W(i).
                    123: *>          If JOBZ = 'N', then Z is not referenced.
                    124: *> \endverbatim
                    125: *>
                    126: *> \param[in] LDZ
                    127: *> \verbatim
                    128: *>          LDZ is INTEGER
                    129: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    130: *>          JOBZ = 'V', LDZ >= max(1,N).
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[out] WORK
                    134: *> \verbatim
                    135: *>          WORK is DOUBLE PRECISION array, dimension LWORK
                    136: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in] LWORK
                    140: *> \verbatim
                    141: *>          LWORK is INTEGER
                    142: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
                    143: *>          otherwise  
                    144: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
                    145: *>                                   LWORK = MAX(1, dimension) where
                    146: *>                                   dimension = (2KD+1)*N + KD*NTHREADS + N
                    147: *>                                   where KD is the size of the band.
                    148: *>                                   NTHREADS is the number of threads used when
                    149: *>                                   openMP compilation is enabled, otherwise =1.
                    150: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
                    151: *>
                    152: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    153: *>          only calculates the optimal sizes of the WORK and IWORK
                    154: *>          arrays, returns these values as the first entries of the WORK
                    155: *>          and IWORK arrays, and no error message related to LWORK or
                    156: *>          LIWORK is issued by XERBLA.
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[out] IWORK
                    160: *> \verbatim
                    161: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    162: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    163: *> \endverbatim
                    164: *>
                    165: *> \param[in] LIWORK
                    166: *> \verbatim
                    167: *>          LIWORK is INTEGER
                    168: *>          The dimension of the array IWORK.
                    169: *>          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
                    170: *>          If JOBZ  = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
                    171: *>
                    172: *>          If LIWORK = -1, then a workspace query is assumed; the
                    173: *>          routine only calculates the optimal sizes of the WORK and
                    174: *>          IWORK arrays, returns these values as the first entries of
                    175: *>          the WORK and IWORK arrays, and no error message related to
                    176: *>          LWORK or LIWORK is issued by XERBLA.
                    177: *> \endverbatim
                    178: *>
                    179: *> \param[out] INFO
                    180: *> \verbatim
                    181: *>          INFO is INTEGER
                    182: *>          = 0:  successful exit
                    183: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    184: *>          > 0:  if INFO = i, the algorithm failed to converge; i
                    185: *>                off-diagonal elements of an intermediate tridiagonal
                    186: *>                form did not converge to zero.
                    187: *> \endverbatim
                    188: *
                    189: *  Authors:
                    190: *  ========
                    191: *
                    192: *> \author Univ. of Tennessee
                    193: *> \author Univ. of California Berkeley
                    194: *> \author Univ. of Colorado Denver
                    195: *> \author NAG Ltd.
                    196: *
                    197: *> \ingroup doubleOTHEReigen
                    198: *
                    199: *> \par Further Details:
                    200: *  =====================
                    201: *>
                    202: *> \verbatim
                    203: *>
                    204: *>  All details about the 2stage techniques are available in:
                    205: *>
                    206: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
                    207: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
                    208: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
                    209: *>  of 2011 International Conference for High Performance Computing,
                    210: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
                    211: *>  Article 8 , 11 pages.
                    212: *>  http://doi.acm.org/10.1145/2063384.2063394
                    213: *>
                    214: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
                    215: *>  An improved parallel singular value algorithm and its implementation 
                    216: *>  for multicore hardware, In Proceedings of 2013 International Conference
                    217: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
                    218: *>  Denver, Colorado, USA, 2013.
                    219: *>  Article 90, 12 pages.
                    220: *>  http://doi.acm.org/10.1145/2503210.2503292
                    221: *>
                    222: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
                    223: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
                    224: *>  calculations based on fine-grained memory aware tasks.
                    225: *>  International Journal of High Performance Computing Applications.
                    226: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
                    227: *>  http://hpc.sagepub.com/content/28/2/196 
                    228: *>
                    229: *> \endverbatim
                    230: *
                    231: *  =====================================================================
                    232:       SUBROUTINE DSBEVD_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
                    233:      $                          WORK, LWORK, IWORK, LIWORK, INFO )
                    234: *
                    235:       IMPLICIT NONE
                    236: *
1.5     ! bertrand  237: *  -- LAPACK driver routine --
1.1       bertrand  238: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    239: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    240: *
                    241: *     .. Scalar Arguments ..
                    242:       CHARACTER          JOBZ, UPLO
                    243:       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
                    244: *     ..
                    245: *     .. Array Arguments ..
                    246:       INTEGER            IWORK( * )
                    247:       DOUBLE PRECISION   AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
                    248: *     ..
                    249: *
                    250: *  =====================================================================
                    251: *
                    252: *     .. Parameters ..
                    253:       DOUBLE PRECISION   ZERO, ONE
                    254:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    255: *     ..
                    256: *     .. Local Scalars ..
                    257:       LOGICAL            LOWER, LQUERY, WANTZ
                    258:       INTEGER            IINFO, INDE, INDWK2, INDWRK, ISCALE, LIWMIN,
                    259:      $                   LLWORK, LWMIN, LHTRD, LWTRD, IB, INDHOUS,
                    260:      $                   LLWRK2
                    261:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    262:      $                   SMLNUM
                    263: *     ..
                    264: *     .. External Functions ..
                    265:       LOGICAL            LSAME
1.3       bertrand  266:       INTEGER            ILAENV2STAGE
1.1       bertrand  267:       DOUBLE PRECISION   DLAMCH, DLANSB
1.3       bertrand  268:       EXTERNAL           LSAME, DLAMCH, DLANSB, ILAENV2STAGE
1.1       bertrand  269: *     ..
                    270: *     .. External Subroutines ..
                    271:       EXTERNAL           DGEMM, DLACPY, DLASCL, DSCAL, DSTEDC,
                    272:      $                   DSTERF, XERBLA, DSYTRD_SB2ST
                    273: *     ..
                    274: *     .. Intrinsic Functions ..
                    275:       INTRINSIC          SQRT
                    276: *     ..
                    277: *     .. Executable Statements ..
                    278: *
                    279: *     Test the input parameters.
                    280: *
                    281:       WANTZ = LSAME( JOBZ, 'V' )
                    282:       LOWER = LSAME( UPLO, 'L' )
                    283:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    284: *
                    285:       INFO = 0
                    286:       IF( N.LE.1 ) THEN
                    287:          LIWMIN = 1
                    288:          LWMIN = 1
                    289:       ELSE
1.3       bertrand  290:          IB    = ILAENV2STAGE( 2, 'DSYTRD_SB2ST', JOBZ, N, KD, -1, -1 )
                    291:          LHTRD = ILAENV2STAGE( 3, 'DSYTRD_SB2ST', JOBZ, N, KD, IB, -1 )
                    292:          LWTRD = ILAENV2STAGE( 4, 'DSYTRD_SB2ST', JOBZ, N, KD, IB, -1 )
1.1       bertrand  293:          IF( WANTZ ) THEN
                    294:             LIWMIN = 3 + 5*N
                    295:             LWMIN = 1 + 5*N + 2*N**2
                    296:          ELSE
                    297:             LIWMIN = 1
                    298:             LWMIN = MAX( 2*N, N+LHTRD+LWTRD )
                    299:          END IF
                    300:       END IF
                    301:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
                    302:          INFO = -1
                    303:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    304:          INFO = -2
                    305:       ELSE IF( N.LT.0 ) THEN
                    306:          INFO = -3
                    307:       ELSE IF( KD.LT.0 ) THEN
                    308:          INFO = -4
                    309:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    310:          INFO = -6
                    311:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    312:          INFO = -9
                    313:       END IF
                    314: *
                    315:       IF( INFO.EQ.0 ) THEN
                    316:          WORK( 1 )  = LWMIN
                    317:          IWORK( 1 ) = LIWMIN
                    318: *
                    319:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    320:             INFO = -11
                    321:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    322:             INFO = -13
                    323:          END IF
                    324:       END IF
                    325: *
                    326:       IF( INFO.NE.0 ) THEN
                    327:          CALL XERBLA( 'DSBEVD_2STAGE', -INFO )
                    328:          RETURN
                    329:       ELSE IF( LQUERY ) THEN
                    330:          RETURN
                    331:       END IF
                    332: *
                    333: *     Quick return if possible
                    334: *
                    335:       IF( N.EQ.0 )
                    336:      $   RETURN
                    337: *
                    338:       IF( N.EQ.1 ) THEN
                    339:          W( 1 ) = AB( 1, 1 )
                    340:          IF( WANTZ )
                    341:      $      Z( 1, 1 ) = ONE
                    342:          RETURN
                    343:       END IF
                    344: *
                    345: *     Get machine constants.
                    346: *
                    347:       SAFMIN = DLAMCH( 'Safe minimum' )
                    348:       EPS    = DLAMCH( 'Precision' )
                    349:       SMLNUM = SAFMIN / EPS
                    350:       BIGNUM = ONE / SMLNUM
                    351:       RMIN   = SQRT( SMLNUM )
                    352:       RMAX   = SQRT( BIGNUM )
                    353: *
                    354: *     Scale matrix to allowable range, if necessary.
                    355: *
                    356:       ANRM = DLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
                    357:       ISCALE = 0
                    358:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    359:          ISCALE = 1
                    360:          SIGMA = RMIN / ANRM
                    361:       ELSE IF( ANRM.GT.RMAX ) THEN
                    362:          ISCALE = 1
                    363:          SIGMA = RMAX / ANRM
                    364:       END IF
                    365:       IF( ISCALE.EQ.1 ) THEN
                    366:          IF( LOWER ) THEN
                    367:             CALL DLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    368:          ELSE
                    369:             CALL DLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    370:          END IF
                    371:       END IF
                    372: *
                    373: *     Call DSYTRD_SB2ST to reduce band symmetric matrix to tridiagonal form.
                    374: *
                    375:       INDE    = 1
                    376:       INDHOUS = INDE + N
                    377:       INDWRK  = INDHOUS + LHTRD
                    378:       LLWORK  = LWORK - INDWRK + 1
                    379:       INDWK2  = INDWRK + N*N
                    380:       LLWRK2  = LWORK - INDWK2 + 1
                    381: *
                    382:       CALL DSYTRD_SB2ST( "N", JOBZ, UPLO, N, KD, AB, LDAB, W,
                    383:      $                    WORK( INDE ), WORK( INDHOUS ), LHTRD, 
                    384:      $                    WORK( INDWRK ), LLWORK, IINFO )
                    385: *
                    386: *     For eigenvalues only, call DSTERF.  For eigenvectors, call SSTEDC.
                    387: *
                    388:       IF( .NOT.WANTZ ) THEN
                    389:          CALL DSTERF( N, W, WORK( INDE ), INFO )
                    390:       ELSE
                    391:          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
                    392:      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
                    393:          CALL DGEMM( 'N', 'N', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
                    394:      $               ZERO, WORK( INDWK2 ), N )
                    395:          CALL DLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
                    396:       END IF
                    397: *
                    398: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    399: *
                    400:       IF( ISCALE.EQ.1 )
                    401:      $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
                    402: *
                    403:       WORK( 1 ) = LWMIN
                    404:       IWORK( 1 ) = LIWMIN
                    405:       RETURN
                    406: *
                    407: *     End of DSBEVD_2STAGE
                    408: *
                    409:       END

CVSweb interface <joel.bertrand@systella.fr>