Annotation of rpl/lapack/lapack/dsbevd.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE DSBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
                      2:      $                   LWORK, IWORK, LIWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBZ, UPLO
                     11:       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IWORK( * )
                     15:       DOUBLE PRECISION   AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  DSBEVD computes all the eigenvalues and, optionally, eigenvectors of
                     22: *  a real symmetric band matrix A. If eigenvectors are desired, it uses
                     23: *  a divide and conquer algorithm.
                     24: *
                     25: *  The divide and conquer algorithm makes very mild assumptions about
                     26: *  floating point arithmetic. It will work on machines with a guard
                     27: *  digit in add/subtract, or on those binary machines without guard
                     28: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     29: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     30: *  without guard digits, but we know of none.
                     31: *
                     32: *  Arguments
                     33: *  =========
                     34: *
                     35: *  JOBZ    (input) CHARACTER*1
                     36: *          = 'N':  Compute eigenvalues only;
                     37: *          = 'V':  Compute eigenvalues and eigenvectors.
                     38: *
                     39: *  UPLO    (input) CHARACTER*1
                     40: *          = 'U':  Upper triangle of A is stored;
                     41: *          = 'L':  Lower triangle of A is stored.
                     42: *
                     43: *  N       (input) INTEGER
                     44: *          The order of the matrix A.  N >= 0.
                     45: *
                     46: *  KD      (input) INTEGER
                     47: *          The number of superdiagonals of the matrix A if UPLO = 'U',
                     48: *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     49: *
                     50: *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
                     51: *          On entry, the upper or lower triangle of the symmetric band
                     52: *          matrix A, stored in the first KD+1 rows of the array.  The
                     53: *          j-th column of A is stored in the j-th column of the array AB
                     54: *          as follows:
                     55: *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     56: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     57: *
                     58: *          On exit, AB is overwritten by values generated during the
                     59: *          reduction to tridiagonal form.  If UPLO = 'U', the first
                     60: *          superdiagonal and the diagonal of the tridiagonal matrix T
                     61: *          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
                     62: *          the diagonal and first subdiagonal of T are returned in the
                     63: *          first two rows of AB.
                     64: *
                     65: *  LDAB    (input) INTEGER
                     66: *          The leading dimension of the array AB.  LDAB >= KD + 1.
                     67: *
                     68: *  W       (output) DOUBLE PRECISION array, dimension (N)
                     69: *          If INFO = 0, the eigenvalues in ascending order.
                     70: *
                     71: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
                     72: *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                     73: *          eigenvectors of the matrix A, with the i-th column of Z
                     74: *          holding the eigenvector associated with W(i).
                     75: *          If JOBZ = 'N', then Z is not referenced.
                     76: *
                     77: *  LDZ     (input) INTEGER
                     78: *          The leading dimension of the array Z.  LDZ >= 1, and if
                     79: *          JOBZ = 'V', LDZ >= max(1,N).
                     80: *
                     81: *  WORK    (workspace/output) DOUBLE PRECISION array,
                     82: *                                         dimension (LWORK)
                     83: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     84: *
                     85: *  LWORK   (input) INTEGER
                     86: *          The dimension of the array WORK.
                     87: *          IF N <= 1,                LWORK must be at least 1.
                     88: *          If JOBZ  = 'N' and N > 2, LWORK must be at least 2*N.
                     89: *          If JOBZ  = 'V' and N > 2, LWORK must be at least
                     90: *                         ( 1 + 5*N + 2*N**2 ).
                     91: *
                     92: *          If LWORK = -1, then a workspace query is assumed; the routine
                     93: *          only calculates the optimal sizes of the WORK and IWORK
                     94: *          arrays, returns these values as the first entries of the WORK
                     95: *          and IWORK arrays, and no error message related to LWORK or
                     96: *          LIWORK is issued by XERBLA.
                     97: *
                     98: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                     99: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    100: *
                    101: *  LIWORK  (input) INTEGER
                    102: *          The dimension of the array LIWORK.
                    103: *          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
                    104: *          If JOBZ  = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
                    105: *
                    106: *          If LIWORK = -1, then a workspace query is assumed; the
                    107: *          routine only calculates the optimal sizes of the WORK and
                    108: *          IWORK arrays, returns these values as the first entries of
                    109: *          the WORK and IWORK arrays, and no error message related to
                    110: *          LWORK or LIWORK is issued by XERBLA.
                    111: *
                    112: *  INFO    (output) INTEGER
                    113: *          = 0:  successful exit
                    114: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    115: *          > 0:  if INFO = i, the algorithm failed to converge; i
                    116: *                off-diagonal elements of an intermediate tridiagonal
                    117: *                form did not converge to zero.
                    118: *
                    119: *  =====================================================================
                    120: *
                    121: *     .. Parameters ..
                    122:       DOUBLE PRECISION   ZERO, ONE
                    123:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    124: *     ..
                    125: *     .. Local Scalars ..
                    126:       LOGICAL            LOWER, LQUERY, WANTZ
                    127:       INTEGER            IINFO, INDE, INDWK2, INDWRK, ISCALE, LIWMIN,
                    128:      $                   LLWRK2, LWMIN
                    129:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    130:      $                   SMLNUM
                    131: *     ..
                    132: *     .. External Functions ..
                    133:       LOGICAL            LSAME
                    134:       DOUBLE PRECISION   DLAMCH, DLANSB
                    135:       EXTERNAL           LSAME, DLAMCH, DLANSB
                    136: *     ..
                    137: *     .. External Subroutines ..
                    138:       EXTERNAL           DGEMM, DLACPY, DLASCL, DSBTRD, DSCAL, DSTEDC,
                    139:      $                   DSTERF, XERBLA
                    140: *     ..
                    141: *     .. Intrinsic Functions ..
                    142:       INTRINSIC          SQRT
                    143: *     ..
                    144: *     .. Executable Statements ..
                    145: *
                    146: *     Test the input parameters.
                    147: *
                    148:       WANTZ = LSAME( JOBZ, 'V' )
                    149:       LOWER = LSAME( UPLO, 'L' )
                    150:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    151: *
                    152:       INFO = 0
                    153:       IF( N.LE.1 ) THEN
                    154:          LIWMIN = 1
                    155:          LWMIN = 1
                    156:       ELSE
                    157:          IF( WANTZ ) THEN
                    158:             LIWMIN = 3 + 5*N
                    159:             LWMIN = 1 + 5*N + 2*N**2
                    160:          ELSE
                    161:             LIWMIN = 1
                    162:             LWMIN = 2*N
                    163:          END IF
                    164:       END IF
                    165:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    166:          INFO = -1
                    167:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    168:          INFO = -2
                    169:       ELSE IF( N.LT.0 ) THEN
                    170:          INFO = -3
                    171:       ELSE IF( KD.LT.0 ) THEN
                    172:          INFO = -4
                    173:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    174:          INFO = -6
                    175:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    176:          INFO = -9
                    177:       END IF
                    178: *
                    179:       IF( INFO.EQ.0 ) THEN
                    180:          WORK( 1 ) = LWMIN
                    181:          IWORK( 1 ) = LIWMIN
                    182: *
                    183:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    184:             INFO = -11
                    185:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    186:             INFO = -13
                    187:          END IF
                    188:       END IF
                    189: *
                    190:       IF( INFO.NE.0 ) THEN
                    191:          CALL XERBLA( 'DSBEVD', -INFO )
                    192:          RETURN
                    193:       ELSE IF( LQUERY ) THEN
                    194:          RETURN
                    195:       END IF
                    196: *
                    197: *     Quick return if possible
                    198: *
                    199:       IF( N.EQ.0 )
                    200:      $   RETURN
                    201: *
                    202:       IF( N.EQ.1 ) THEN
                    203:          W( 1 ) = AB( 1, 1 )
                    204:          IF( WANTZ )
                    205:      $      Z( 1, 1 ) = ONE
                    206:          RETURN
                    207:       END IF
                    208: *
                    209: *     Get machine constants.
                    210: *
                    211:       SAFMIN = DLAMCH( 'Safe minimum' )
                    212:       EPS = DLAMCH( 'Precision' )
                    213:       SMLNUM = SAFMIN / EPS
                    214:       BIGNUM = ONE / SMLNUM
                    215:       RMIN = SQRT( SMLNUM )
                    216:       RMAX = SQRT( BIGNUM )
                    217: *
                    218: *     Scale matrix to allowable range, if necessary.
                    219: *
                    220:       ANRM = DLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
                    221:       ISCALE = 0
                    222:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    223:          ISCALE = 1
                    224:          SIGMA = RMIN / ANRM
                    225:       ELSE IF( ANRM.GT.RMAX ) THEN
                    226:          ISCALE = 1
                    227:          SIGMA = RMAX / ANRM
                    228:       END IF
                    229:       IF( ISCALE.EQ.1 ) THEN
                    230:          IF( LOWER ) THEN
                    231:             CALL DLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    232:          ELSE
                    233:             CALL DLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    234:          END IF
                    235:       END IF
                    236: *
                    237: *     Call DSBTRD to reduce symmetric band matrix to tridiagonal form.
                    238: *
                    239:       INDE = 1
                    240:       INDWRK = INDE + N
                    241:       INDWK2 = INDWRK + N*N
                    242:       LLWRK2 = LWORK - INDWK2 + 1
                    243:       CALL DSBTRD( JOBZ, UPLO, N, KD, AB, LDAB, W, WORK( INDE ), Z, LDZ,
                    244:      $             WORK( INDWRK ), IINFO )
                    245: *
                    246: *     For eigenvalues only, call DSTERF.  For eigenvectors, call SSTEDC.
                    247: *
                    248:       IF( .NOT.WANTZ ) THEN
                    249:          CALL DSTERF( N, W, WORK( INDE ), INFO )
                    250:       ELSE
                    251:          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
                    252:      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
                    253:          CALL DGEMM( 'N', 'N', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
                    254:      $               ZERO, WORK( INDWK2 ), N )
                    255:          CALL DLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
                    256:       END IF
                    257: *
                    258: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    259: *
                    260:       IF( ISCALE.EQ.1 )
                    261:      $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
                    262: *
                    263:       WORK( 1 ) = LWMIN
                    264:       IWORK( 1 ) = LIWMIN
                    265:       RETURN
                    266: *
                    267: *     End of DSBEVD
                    268: *
                    269:       END

CVSweb interface <joel.bertrand@systella.fr>