Annotation of rpl/lapack/lapack/dsbevd.f, revision 1.18

1.8       bertrand    1: *> \brief <b> DSBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DSBEVD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbevd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbevd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbevd.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
                     22: *                          LWORK, IWORK, LIWORK, INFO )
1.15      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBZ, UPLO
                     26: *       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IWORK( * )
                     30: *       DOUBLE PRECISION   AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
                     31: *       ..
1.15      bertrand   32: *
1.8       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DSBEVD computes all the eigenvalues and, optionally, eigenvectors of
                     40: *> a real symmetric band matrix A. If eigenvectors are desired, it uses
                     41: *> a divide and conquer algorithm.
                     42: *>
                     43: *> The divide and conquer algorithm makes very mild assumptions about
                     44: *> floating point arithmetic. It will work on machines with a guard
                     45: *> digit in add/subtract, or on those binary machines without guard
                     46: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     47: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     48: *> without guard digits, but we know of none.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] JOBZ
                     55: *> \verbatim
                     56: *>          JOBZ is CHARACTER*1
                     57: *>          = 'N':  Compute eigenvalues only;
                     58: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] UPLO
                     62: *> \verbatim
                     63: *>          UPLO is CHARACTER*1
                     64: *>          = 'U':  Upper triangle of A is stored;
                     65: *>          = 'L':  Lower triangle of A is stored.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] N
                     69: *> \verbatim
                     70: *>          N is INTEGER
                     71: *>          The order of the matrix A.  N >= 0.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] KD
                     75: *> \verbatim
                     76: *>          KD is INTEGER
                     77: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     78: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in,out] AB
                     82: *> \verbatim
                     83: *>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
                     84: *>          On entry, the upper or lower triangle of the symmetric band
                     85: *>          matrix A, stored in the first KD+1 rows of the array.  The
                     86: *>          j-th column of A is stored in the j-th column of the array AB
                     87: *>          as follows:
                     88: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     89: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     90: *>
                     91: *>          On exit, AB is overwritten by values generated during the
                     92: *>          reduction to tridiagonal form.  If UPLO = 'U', the first
                     93: *>          superdiagonal and the diagonal of the tridiagonal matrix T
                     94: *>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
                     95: *>          the diagonal and first subdiagonal of T are returned in the
                     96: *>          first two rows of AB.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] LDAB
                    100: *> \verbatim
                    101: *>          LDAB is INTEGER
                    102: *>          The leading dimension of the array AB.  LDAB >= KD + 1.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[out] W
                    106: *> \verbatim
                    107: *>          W is DOUBLE PRECISION array, dimension (N)
                    108: *>          If INFO = 0, the eigenvalues in ascending order.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[out] Z
                    112: *> \verbatim
                    113: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
                    114: *>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                    115: *>          eigenvectors of the matrix A, with the i-th column of Z
                    116: *>          holding the eigenvector associated with W(i).
                    117: *>          If JOBZ = 'N', then Z is not referenced.
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in] LDZ
                    121: *> \verbatim
                    122: *>          LDZ is INTEGER
                    123: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    124: *>          JOBZ = 'V', LDZ >= max(1,N).
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[out] WORK
                    128: *> \verbatim
                    129: *>          WORK is DOUBLE PRECISION array,
                    130: *>                                         dimension (LWORK)
                    131: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in] LWORK
                    135: *> \verbatim
                    136: *>          LWORK is INTEGER
                    137: *>          The dimension of the array WORK.
                    138: *>          IF N <= 1,                LWORK must be at least 1.
                    139: *>          If JOBZ  = 'N' and N > 2, LWORK must be at least 2*N.
                    140: *>          If JOBZ  = 'V' and N > 2, LWORK must be at least
                    141: *>                         ( 1 + 5*N + 2*N**2 ).
                    142: *>
                    143: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    144: *>          only calculates the optimal sizes of the WORK and IWORK
                    145: *>          arrays, returns these values as the first entries of the WORK
                    146: *>          and IWORK arrays, and no error message related to LWORK or
                    147: *>          LIWORK is issued by XERBLA.
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[out] IWORK
                    151: *> \verbatim
                    152: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    153: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[in] LIWORK
                    157: *> \verbatim
                    158: *>          LIWORK is INTEGER
1.11      bertrand  159: *>          The dimension of the array IWORK.
1.8       bertrand  160: *>          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
                    161: *>          If JOBZ  = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
                    162: *>
                    163: *>          If LIWORK = -1, then a workspace query is assumed; the
                    164: *>          routine only calculates the optimal sizes of the WORK and
                    165: *>          IWORK arrays, returns these values as the first entries of
                    166: *>          the WORK and IWORK arrays, and no error message related to
                    167: *>          LWORK or LIWORK is issued by XERBLA.
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[out] INFO
                    171: *> \verbatim
                    172: *>          INFO is INTEGER
                    173: *>          = 0:  successful exit
                    174: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    175: *>          > 0:  if INFO = i, the algorithm failed to converge; i
                    176: *>                off-diagonal elements of an intermediate tridiagonal
                    177: *>                form did not converge to zero.
                    178: *> \endverbatim
                    179: *
                    180: *  Authors:
                    181: *  ========
                    182: *
1.15      bertrand  183: *> \author Univ. of Tennessee
                    184: *> \author Univ. of California Berkeley
                    185: *> \author Univ. of Colorado Denver
                    186: *> \author NAG Ltd.
1.8       bertrand  187: *
                    188: *> \ingroup doubleOTHEReigen
                    189: *
                    190: *  =====================================================================
1.1       bertrand  191:       SUBROUTINE DSBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
                    192:      $                   LWORK, IWORK, LIWORK, INFO )
                    193: *
1.18    ! bertrand  194: *  -- LAPACK driver routine --
1.1       bertrand  195: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    196: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    197: *
                    198: *     .. Scalar Arguments ..
                    199:       CHARACTER          JOBZ, UPLO
                    200:       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
                    201: *     ..
                    202: *     .. Array Arguments ..
                    203:       INTEGER            IWORK( * )
                    204:       DOUBLE PRECISION   AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
                    205: *     ..
                    206: *
                    207: *  =====================================================================
                    208: *
                    209: *     .. Parameters ..
                    210:       DOUBLE PRECISION   ZERO, ONE
                    211:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    212: *     ..
                    213: *     .. Local Scalars ..
                    214:       LOGICAL            LOWER, LQUERY, WANTZ
                    215:       INTEGER            IINFO, INDE, INDWK2, INDWRK, ISCALE, LIWMIN,
                    216:      $                   LLWRK2, LWMIN
                    217:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    218:      $                   SMLNUM
                    219: *     ..
                    220: *     .. External Functions ..
                    221:       LOGICAL            LSAME
                    222:       DOUBLE PRECISION   DLAMCH, DLANSB
                    223:       EXTERNAL           LSAME, DLAMCH, DLANSB
                    224: *     ..
                    225: *     .. External Subroutines ..
                    226:       EXTERNAL           DGEMM, DLACPY, DLASCL, DSBTRD, DSCAL, DSTEDC,
                    227:      $                   DSTERF, XERBLA
                    228: *     ..
                    229: *     .. Intrinsic Functions ..
                    230:       INTRINSIC          SQRT
                    231: *     ..
                    232: *     .. Executable Statements ..
                    233: *
                    234: *     Test the input parameters.
                    235: *
                    236:       WANTZ = LSAME( JOBZ, 'V' )
                    237:       LOWER = LSAME( UPLO, 'L' )
                    238:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    239: *
                    240:       INFO = 0
                    241:       IF( N.LE.1 ) THEN
                    242:          LIWMIN = 1
                    243:          LWMIN = 1
                    244:       ELSE
                    245:          IF( WANTZ ) THEN
                    246:             LIWMIN = 3 + 5*N
                    247:             LWMIN = 1 + 5*N + 2*N**2
                    248:          ELSE
                    249:             LIWMIN = 1
                    250:             LWMIN = 2*N
                    251:          END IF
                    252:       END IF
                    253:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    254:          INFO = -1
                    255:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    256:          INFO = -2
                    257:       ELSE IF( N.LT.0 ) THEN
                    258:          INFO = -3
                    259:       ELSE IF( KD.LT.0 ) THEN
                    260:          INFO = -4
                    261:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    262:          INFO = -6
                    263:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    264:          INFO = -9
                    265:       END IF
                    266: *
                    267:       IF( INFO.EQ.0 ) THEN
                    268:          WORK( 1 ) = LWMIN
                    269:          IWORK( 1 ) = LIWMIN
                    270: *
                    271:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    272:             INFO = -11
                    273:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    274:             INFO = -13
                    275:          END IF
                    276:       END IF
                    277: *
                    278:       IF( INFO.NE.0 ) THEN
                    279:          CALL XERBLA( 'DSBEVD', -INFO )
                    280:          RETURN
                    281:       ELSE IF( LQUERY ) THEN
                    282:          RETURN
                    283:       END IF
                    284: *
                    285: *     Quick return if possible
                    286: *
                    287:       IF( N.EQ.0 )
                    288:      $   RETURN
                    289: *
                    290:       IF( N.EQ.1 ) THEN
                    291:          W( 1 ) = AB( 1, 1 )
                    292:          IF( WANTZ )
                    293:      $      Z( 1, 1 ) = ONE
                    294:          RETURN
                    295:       END IF
                    296: *
                    297: *     Get machine constants.
                    298: *
                    299:       SAFMIN = DLAMCH( 'Safe minimum' )
                    300:       EPS = DLAMCH( 'Precision' )
                    301:       SMLNUM = SAFMIN / EPS
                    302:       BIGNUM = ONE / SMLNUM
                    303:       RMIN = SQRT( SMLNUM )
                    304:       RMAX = SQRT( BIGNUM )
                    305: *
                    306: *     Scale matrix to allowable range, if necessary.
                    307: *
                    308:       ANRM = DLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
                    309:       ISCALE = 0
                    310:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    311:          ISCALE = 1
                    312:          SIGMA = RMIN / ANRM
                    313:       ELSE IF( ANRM.GT.RMAX ) THEN
                    314:          ISCALE = 1
                    315:          SIGMA = RMAX / ANRM
                    316:       END IF
                    317:       IF( ISCALE.EQ.1 ) THEN
                    318:          IF( LOWER ) THEN
                    319:             CALL DLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    320:          ELSE
                    321:             CALL DLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    322:          END IF
                    323:       END IF
                    324: *
                    325: *     Call DSBTRD to reduce symmetric band matrix to tridiagonal form.
                    326: *
                    327:       INDE = 1
                    328:       INDWRK = INDE + N
                    329:       INDWK2 = INDWRK + N*N
                    330:       LLWRK2 = LWORK - INDWK2 + 1
                    331:       CALL DSBTRD( JOBZ, UPLO, N, KD, AB, LDAB, W, WORK( INDE ), Z, LDZ,
                    332:      $             WORK( INDWRK ), IINFO )
                    333: *
                    334: *     For eigenvalues only, call DSTERF.  For eigenvectors, call SSTEDC.
                    335: *
                    336:       IF( .NOT.WANTZ ) THEN
                    337:          CALL DSTERF( N, W, WORK( INDE ), INFO )
                    338:       ELSE
                    339:          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
                    340:      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
                    341:          CALL DGEMM( 'N', 'N', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
                    342:      $               ZERO, WORK( INDWK2 ), N )
                    343:          CALL DLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
                    344:       END IF
                    345: *
                    346: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    347: *
                    348:       IF( ISCALE.EQ.1 )
                    349:      $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
                    350: *
                    351:       WORK( 1 ) = LWMIN
                    352:       IWORK( 1 ) = LIWMIN
                    353:       RETURN
                    354: *
                    355: *     End of DSBEVD
                    356: *
                    357:       END

CVSweb interface <joel.bertrand@systella.fr>