Annotation of rpl/lapack/lapack/dsbevd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
        !             2:      $                   LWORK, IWORK, LIWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          JOBZ, UPLO
        !            11:       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            IWORK( * )
        !            15:       DOUBLE PRECISION   AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DSBEVD computes all the eigenvalues and, optionally, eigenvectors of
        !            22: *  a real symmetric band matrix A. If eigenvectors are desired, it uses
        !            23: *  a divide and conquer algorithm.
        !            24: *
        !            25: *  The divide and conquer algorithm makes very mild assumptions about
        !            26: *  floating point arithmetic. It will work on machines with a guard
        !            27: *  digit in add/subtract, or on those binary machines without guard
        !            28: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            29: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            30: *  without guard digits, but we know of none.
        !            31: *
        !            32: *  Arguments
        !            33: *  =========
        !            34: *
        !            35: *  JOBZ    (input) CHARACTER*1
        !            36: *          = 'N':  Compute eigenvalues only;
        !            37: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            38: *
        !            39: *  UPLO    (input) CHARACTER*1
        !            40: *          = 'U':  Upper triangle of A is stored;
        !            41: *          = 'L':  Lower triangle of A is stored.
        !            42: *
        !            43: *  N       (input) INTEGER
        !            44: *          The order of the matrix A.  N >= 0.
        !            45: *
        !            46: *  KD      (input) INTEGER
        !            47: *          The number of superdiagonals of the matrix A if UPLO = 'U',
        !            48: *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
        !            49: *
        !            50: *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
        !            51: *          On entry, the upper or lower triangle of the symmetric band
        !            52: *          matrix A, stored in the first KD+1 rows of the array.  The
        !            53: *          j-th column of A is stored in the j-th column of the array AB
        !            54: *          as follows:
        !            55: *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
        !            56: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
        !            57: *
        !            58: *          On exit, AB is overwritten by values generated during the
        !            59: *          reduction to tridiagonal form.  If UPLO = 'U', the first
        !            60: *          superdiagonal and the diagonal of the tridiagonal matrix T
        !            61: *          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
        !            62: *          the diagonal and first subdiagonal of T are returned in the
        !            63: *          first two rows of AB.
        !            64: *
        !            65: *  LDAB    (input) INTEGER
        !            66: *          The leading dimension of the array AB.  LDAB >= KD + 1.
        !            67: *
        !            68: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !            69: *          If INFO = 0, the eigenvalues in ascending order.
        !            70: *
        !            71: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
        !            72: *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
        !            73: *          eigenvectors of the matrix A, with the i-th column of Z
        !            74: *          holding the eigenvector associated with W(i).
        !            75: *          If JOBZ = 'N', then Z is not referenced.
        !            76: *
        !            77: *  LDZ     (input) INTEGER
        !            78: *          The leading dimension of the array Z.  LDZ >= 1, and if
        !            79: *          JOBZ = 'V', LDZ >= max(1,N).
        !            80: *
        !            81: *  WORK    (workspace/output) DOUBLE PRECISION array,
        !            82: *                                         dimension (LWORK)
        !            83: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            84: *
        !            85: *  LWORK   (input) INTEGER
        !            86: *          The dimension of the array WORK.
        !            87: *          IF N <= 1,                LWORK must be at least 1.
        !            88: *          If JOBZ  = 'N' and N > 2, LWORK must be at least 2*N.
        !            89: *          If JOBZ  = 'V' and N > 2, LWORK must be at least
        !            90: *                         ( 1 + 5*N + 2*N**2 ).
        !            91: *
        !            92: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            93: *          only calculates the optimal sizes of the WORK and IWORK
        !            94: *          arrays, returns these values as the first entries of the WORK
        !            95: *          and IWORK arrays, and no error message related to LWORK or
        !            96: *          LIWORK is issued by XERBLA.
        !            97: *
        !            98: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !            99: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           100: *
        !           101: *  LIWORK  (input) INTEGER
        !           102: *          The dimension of the array LIWORK.
        !           103: *          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
        !           104: *          If JOBZ  = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
        !           105: *
        !           106: *          If LIWORK = -1, then a workspace query is assumed; the
        !           107: *          routine only calculates the optimal sizes of the WORK and
        !           108: *          IWORK arrays, returns these values as the first entries of
        !           109: *          the WORK and IWORK arrays, and no error message related to
        !           110: *          LWORK or LIWORK is issued by XERBLA.
        !           111: *
        !           112: *  INFO    (output) INTEGER
        !           113: *          = 0:  successful exit
        !           114: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           115: *          > 0:  if INFO = i, the algorithm failed to converge; i
        !           116: *                off-diagonal elements of an intermediate tridiagonal
        !           117: *                form did not converge to zero.
        !           118: *
        !           119: *  =====================================================================
        !           120: *
        !           121: *     .. Parameters ..
        !           122:       DOUBLE PRECISION   ZERO, ONE
        !           123:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           124: *     ..
        !           125: *     .. Local Scalars ..
        !           126:       LOGICAL            LOWER, LQUERY, WANTZ
        !           127:       INTEGER            IINFO, INDE, INDWK2, INDWRK, ISCALE, LIWMIN,
        !           128:      $                   LLWRK2, LWMIN
        !           129:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
        !           130:      $                   SMLNUM
        !           131: *     ..
        !           132: *     .. External Functions ..
        !           133:       LOGICAL            LSAME
        !           134:       DOUBLE PRECISION   DLAMCH, DLANSB
        !           135:       EXTERNAL           LSAME, DLAMCH, DLANSB
        !           136: *     ..
        !           137: *     .. External Subroutines ..
        !           138:       EXTERNAL           DGEMM, DLACPY, DLASCL, DSBTRD, DSCAL, DSTEDC,
        !           139:      $                   DSTERF, XERBLA
        !           140: *     ..
        !           141: *     .. Intrinsic Functions ..
        !           142:       INTRINSIC          SQRT
        !           143: *     ..
        !           144: *     .. Executable Statements ..
        !           145: *
        !           146: *     Test the input parameters.
        !           147: *
        !           148:       WANTZ = LSAME( JOBZ, 'V' )
        !           149:       LOWER = LSAME( UPLO, 'L' )
        !           150:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           151: *
        !           152:       INFO = 0
        !           153:       IF( N.LE.1 ) THEN
        !           154:          LIWMIN = 1
        !           155:          LWMIN = 1
        !           156:       ELSE
        !           157:          IF( WANTZ ) THEN
        !           158:             LIWMIN = 3 + 5*N
        !           159:             LWMIN = 1 + 5*N + 2*N**2
        !           160:          ELSE
        !           161:             LIWMIN = 1
        !           162:             LWMIN = 2*N
        !           163:          END IF
        !           164:       END IF
        !           165:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           166:          INFO = -1
        !           167:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
        !           168:          INFO = -2
        !           169:       ELSE IF( N.LT.0 ) THEN
        !           170:          INFO = -3
        !           171:       ELSE IF( KD.LT.0 ) THEN
        !           172:          INFO = -4
        !           173:       ELSE IF( LDAB.LT.KD+1 ) THEN
        !           174:          INFO = -6
        !           175:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           176:          INFO = -9
        !           177:       END IF
        !           178: *
        !           179:       IF( INFO.EQ.0 ) THEN
        !           180:          WORK( 1 ) = LWMIN
        !           181:          IWORK( 1 ) = LIWMIN
        !           182: *
        !           183:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           184:             INFO = -11
        !           185:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           186:             INFO = -13
        !           187:          END IF
        !           188:       END IF
        !           189: *
        !           190:       IF( INFO.NE.0 ) THEN
        !           191:          CALL XERBLA( 'DSBEVD', -INFO )
        !           192:          RETURN
        !           193:       ELSE IF( LQUERY ) THEN
        !           194:          RETURN
        !           195:       END IF
        !           196: *
        !           197: *     Quick return if possible
        !           198: *
        !           199:       IF( N.EQ.0 )
        !           200:      $   RETURN
        !           201: *
        !           202:       IF( N.EQ.1 ) THEN
        !           203:          W( 1 ) = AB( 1, 1 )
        !           204:          IF( WANTZ )
        !           205:      $      Z( 1, 1 ) = ONE
        !           206:          RETURN
        !           207:       END IF
        !           208: *
        !           209: *     Get machine constants.
        !           210: *
        !           211:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           212:       EPS = DLAMCH( 'Precision' )
        !           213:       SMLNUM = SAFMIN / EPS
        !           214:       BIGNUM = ONE / SMLNUM
        !           215:       RMIN = SQRT( SMLNUM )
        !           216:       RMAX = SQRT( BIGNUM )
        !           217: *
        !           218: *     Scale matrix to allowable range, if necessary.
        !           219: *
        !           220:       ANRM = DLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
        !           221:       ISCALE = 0
        !           222:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
        !           223:          ISCALE = 1
        !           224:          SIGMA = RMIN / ANRM
        !           225:       ELSE IF( ANRM.GT.RMAX ) THEN
        !           226:          ISCALE = 1
        !           227:          SIGMA = RMAX / ANRM
        !           228:       END IF
        !           229:       IF( ISCALE.EQ.1 ) THEN
        !           230:          IF( LOWER ) THEN
        !           231:             CALL DLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
        !           232:          ELSE
        !           233:             CALL DLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
        !           234:          END IF
        !           235:       END IF
        !           236: *
        !           237: *     Call DSBTRD to reduce symmetric band matrix to tridiagonal form.
        !           238: *
        !           239:       INDE = 1
        !           240:       INDWRK = INDE + N
        !           241:       INDWK2 = INDWRK + N*N
        !           242:       LLWRK2 = LWORK - INDWK2 + 1
        !           243:       CALL DSBTRD( JOBZ, UPLO, N, KD, AB, LDAB, W, WORK( INDE ), Z, LDZ,
        !           244:      $             WORK( INDWRK ), IINFO )
        !           245: *
        !           246: *     For eigenvalues only, call DSTERF.  For eigenvectors, call SSTEDC.
        !           247: *
        !           248:       IF( .NOT.WANTZ ) THEN
        !           249:          CALL DSTERF( N, W, WORK( INDE ), INFO )
        !           250:       ELSE
        !           251:          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
        !           252:      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
        !           253:          CALL DGEMM( 'N', 'N', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
        !           254:      $               ZERO, WORK( INDWK2 ), N )
        !           255:          CALL DLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
        !           256:       END IF
        !           257: *
        !           258: *     If matrix was scaled, then rescale eigenvalues appropriately.
        !           259: *
        !           260:       IF( ISCALE.EQ.1 )
        !           261:      $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
        !           262: *
        !           263:       WORK( 1 ) = LWMIN
        !           264:       IWORK( 1 ) = LIWMIN
        !           265:       RETURN
        !           266: *
        !           267: *     End of DSBEVD
        !           268: *
        !           269:       END

CVSweb interface <joel.bertrand@systella.fr>