File:  [local] / rpl / lapack / lapack / dptsvx.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:37 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE DPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
    2:      $                   RCOND, FERR, BERR, WORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          FACT
   11:       INTEGER            INFO, LDB, LDX, N, NRHS
   12:       DOUBLE PRECISION   RCOND
   13: *     ..
   14: *     .. Array Arguments ..
   15:       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
   16:      $                   E( * ), EF( * ), FERR( * ), WORK( * ),
   17:      $                   X( LDX, * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  DPTSVX uses the factorization A = L*D*L**T to compute the solution
   24: *  to a real system of linear equations A*X = B, where A is an N-by-N
   25: *  symmetric positive definite tridiagonal matrix and X and B are
   26: *  N-by-NRHS matrices.
   27: *
   28: *  Error bounds on the solution and a condition estimate are also
   29: *  provided.
   30: *
   31: *  Description
   32: *  ===========
   33: *
   34: *  The following steps are performed:
   35: *
   36: *  1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L
   37: *     is a unit lower bidiagonal matrix and D is diagonal.  The
   38: *     factorization can also be regarded as having the form
   39: *     A = U**T*D*U.
   40: *
   41: *  2. If the leading i-by-i principal minor is not positive definite,
   42: *     then the routine returns with INFO = i. Otherwise, the factored
   43: *     form of A is used to estimate the condition number of the matrix
   44: *     A.  If the reciprocal of the condition number is less than machine
   45: *     precision, INFO = N+1 is returned as a warning, but the routine
   46: *     still goes on to solve for X and compute error bounds as
   47: *     described below.
   48: *
   49: *  3. The system of equations is solved for X using the factored form
   50: *     of A.
   51: *
   52: *  4. Iterative refinement is applied to improve the computed solution
   53: *     matrix and calculate error bounds and backward error estimates
   54: *     for it.
   55: *
   56: *  Arguments
   57: *  =========
   58: *
   59: *  FACT    (input) CHARACTER*1
   60: *          Specifies whether or not the factored form of A has been
   61: *          supplied on entry.
   62: *          = 'F':  On entry, DF and EF contain the factored form of A.
   63: *                  D, E, DF, and EF will not be modified.
   64: *          = 'N':  The matrix A will be copied to DF and EF and
   65: *                  factored.
   66: *
   67: *  N       (input) INTEGER
   68: *          The order of the matrix A.  N >= 0.
   69: *
   70: *  NRHS    (input) INTEGER
   71: *          The number of right hand sides, i.e., the number of columns
   72: *          of the matrices B and X.  NRHS >= 0.
   73: *
   74: *  D       (input) DOUBLE PRECISION array, dimension (N)
   75: *          The n diagonal elements of the tridiagonal matrix A.
   76: *
   77: *  E       (input) DOUBLE PRECISION array, dimension (N-1)
   78: *          The (n-1) subdiagonal elements of the tridiagonal matrix A.
   79: *
   80: *  DF      (input or output) DOUBLE PRECISION array, dimension (N)
   81: *          If FACT = 'F', then DF is an input argument and on entry
   82: *          contains the n diagonal elements of the diagonal matrix D
   83: *          from the L*D*L**T factorization of A.
   84: *          If FACT = 'N', then DF is an output argument and on exit
   85: *          contains the n diagonal elements of the diagonal matrix D
   86: *          from the L*D*L**T factorization of A.
   87: *
   88: *  EF      (input or output) DOUBLE PRECISION array, dimension (N-1)
   89: *          If FACT = 'F', then EF is an input argument and on entry
   90: *          contains the (n-1) subdiagonal elements of the unit
   91: *          bidiagonal factor L from the L*D*L**T factorization of A.
   92: *          If FACT = 'N', then EF is an output argument and on exit
   93: *          contains the (n-1) subdiagonal elements of the unit
   94: *          bidiagonal factor L from the L*D*L**T factorization of A.
   95: *
   96: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
   97: *          The N-by-NRHS right hand side matrix B.
   98: *
   99: *  LDB     (input) INTEGER
  100: *          The leading dimension of the array B.  LDB >= max(1,N).
  101: *
  102: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
  103: *          If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X.
  104: *
  105: *  LDX     (input) INTEGER
  106: *          The leading dimension of the array X.  LDX >= max(1,N).
  107: *
  108: *  RCOND   (output) DOUBLE PRECISION
  109: *          The reciprocal condition number of the matrix A.  If RCOND
  110: *          is less than the machine precision (in particular, if
  111: *          RCOND = 0), the matrix is singular to working precision.
  112: *          This condition is indicated by a return code of INFO > 0.
  113: *
  114: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  115: *          The forward error bound for each solution vector
  116: *          X(j) (the j-th column of the solution matrix X).
  117: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
  118: *          is an estimated upper bound for the magnitude of the largest
  119: *          element in (X(j) - XTRUE) divided by the magnitude of the
  120: *          largest element in X(j).
  121: *
  122: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  123: *          The componentwise relative backward error of each solution
  124: *          vector X(j) (i.e., the smallest relative change in any
  125: *          element of A or B that makes X(j) an exact solution).
  126: *
  127: *  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
  128: *
  129: *  INFO    (output) INTEGER
  130: *          = 0:  successful exit
  131: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  132: *          > 0:  if INFO = i, and i is
  133: *                <= N:  the leading minor of order i of A is
  134: *                       not positive definite, so the factorization
  135: *                       could not be completed, and the solution has not
  136: *                       been computed. RCOND = 0 is returned.
  137: *                = N+1: U is nonsingular, but RCOND is less than machine
  138: *                       precision, meaning that the matrix is singular
  139: *                       to working precision.  Nevertheless, the
  140: *                       solution and error bounds are computed because
  141: *                       there are a number of situations where the
  142: *                       computed solution can be more accurate than the
  143: *                       value of RCOND would suggest.
  144: *
  145: *  =====================================================================
  146: *
  147: *     .. Parameters ..
  148:       DOUBLE PRECISION   ZERO
  149:       PARAMETER          ( ZERO = 0.0D+0 )
  150: *     ..
  151: *     .. Local Scalars ..
  152:       LOGICAL            NOFACT
  153:       DOUBLE PRECISION   ANORM
  154: *     ..
  155: *     .. External Functions ..
  156:       LOGICAL            LSAME
  157:       DOUBLE PRECISION   DLAMCH, DLANST
  158:       EXTERNAL           LSAME, DLAMCH, DLANST
  159: *     ..
  160: *     .. External Subroutines ..
  161:       EXTERNAL           DCOPY, DLACPY, DPTCON, DPTRFS, DPTTRF, DPTTRS,
  162:      $                   XERBLA
  163: *     ..
  164: *     .. Intrinsic Functions ..
  165:       INTRINSIC          MAX
  166: *     ..
  167: *     .. Executable Statements ..
  168: *
  169: *     Test the input parameters.
  170: *
  171:       INFO = 0
  172:       NOFACT = LSAME( FACT, 'N' )
  173:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
  174:          INFO = -1
  175:       ELSE IF( N.LT.0 ) THEN
  176:          INFO = -2
  177:       ELSE IF( NRHS.LT.0 ) THEN
  178:          INFO = -3
  179:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  180:          INFO = -9
  181:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  182:          INFO = -11
  183:       END IF
  184:       IF( INFO.NE.0 ) THEN
  185:          CALL XERBLA( 'DPTSVX', -INFO )
  186:          RETURN
  187:       END IF
  188: *
  189:       IF( NOFACT ) THEN
  190: *
  191: *        Compute the L*D*L' (or U'*D*U) factorization of A.
  192: *
  193:          CALL DCOPY( N, D, 1, DF, 1 )
  194:          IF( N.GT.1 )
  195:      $      CALL DCOPY( N-1, E, 1, EF, 1 )
  196:          CALL DPTTRF( N, DF, EF, INFO )
  197: *
  198: *        Return if INFO is non-zero.
  199: *
  200:          IF( INFO.GT.0 )THEN
  201:             RCOND = ZERO
  202:             RETURN
  203:          END IF
  204:       END IF
  205: *
  206: *     Compute the norm of the matrix A.
  207: *
  208:       ANORM = DLANST( '1', N, D, E )
  209: *
  210: *     Compute the reciprocal of the condition number of A.
  211: *
  212:       CALL DPTCON( N, DF, EF, ANORM, RCOND, WORK, INFO )
  213: *
  214: *     Compute the solution vectors X.
  215: *
  216:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  217:       CALL DPTTRS( N, NRHS, DF, EF, X, LDX, INFO )
  218: *
  219: *     Use iterative refinement to improve the computed solutions and
  220: *     compute error bounds and backward error estimates for them.
  221: *
  222:       CALL DPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR,
  223:      $             WORK, INFO )
  224: *
  225: *     Set INFO = N+1 if the matrix is singular to working precision.
  226: *
  227:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  228:      $   INFO = N + 1
  229: *
  230:       RETURN
  231: *
  232: *     End of DPTSVX
  233: *
  234:       END

CVSweb interface <joel.bertrand@systella.fr>