Annotation of rpl/lapack/lapack/dptsvx.f, revision 1.1.1.1

1.1       bertrand    1:       SUBROUTINE DPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
                      2:      $                   RCOND, FERR, BERR, WORK, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          FACT
                     11:       INTEGER            INFO, LDB, LDX, N, NRHS
                     12:       DOUBLE PRECISION   RCOND
                     13: *     ..
                     14: *     .. Array Arguments ..
                     15:       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
                     16:      $                   E( * ), EF( * ), FERR( * ), WORK( * ),
                     17:      $                   X( LDX, * )
                     18: *     ..
                     19: *
                     20: *  Purpose
                     21: *  =======
                     22: *
                     23: *  DPTSVX uses the factorization A = L*D*L**T to compute the solution
                     24: *  to a real system of linear equations A*X = B, where A is an N-by-N
                     25: *  symmetric positive definite tridiagonal matrix and X and B are
                     26: *  N-by-NRHS matrices.
                     27: *
                     28: *  Error bounds on the solution and a condition estimate are also
                     29: *  provided.
                     30: *
                     31: *  Description
                     32: *  ===========
                     33: *
                     34: *  The following steps are performed:
                     35: *
                     36: *  1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L
                     37: *     is a unit lower bidiagonal matrix and D is diagonal.  The
                     38: *     factorization can also be regarded as having the form
                     39: *     A = U**T*D*U.
                     40: *
                     41: *  2. If the leading i-by-i principal minor is not positive definite,
                     42: *     then the routine returns with INFO = i. Otherwise, the factored
                     43: *     form of A is used to estimate the condition number of the matrix
                     44: *     A.  If the reciprocal of the condition number is less than machine
                     45: *     precision, INFO = N+1 is returned as a warning, but the routine
                     46: *     still goes on to solve for X and compute error bounds as
                     47: *     described below.
                     48: *
                     49: *  3. The system of equations is solved for X using the factored form
                     50: *     of A.
                     51: *
                     52: *  4. Iterative refinement is applied to improve the computed solution
                     53: *     matrix and calculate error bounds and backward error estimates
                     54: *     for it.
                     55: *
                     56: *  Arguments
                     57: *  =========
                     58: *
                     59: *  FACT    (input) CHARACTER*1
                     60: *          Specifies whether or not the factored form of A has been
                     61: *          supplied on entry.
                     62: *          = 'F':  On entry, DF and EF contain the factored form of A.
                     63: *                  D, E, DF, and EF will not be modified.
                     64: *          = 'N':  The matrix A will be copied to DF and EF and
                     65: *                  factored.
                     66: *
                     67: *  N       (input) INTEGER
                     68: *          The order of the matrix A.  N >= 0.
                     69: *
                     70: *  NRHS    (input) INTEGER
                     71: *          The number of right hand sides, i.e., the number of columns
                     72: *          of the matrices B and X.  NRHS >= 0.
                     73: *
                     74: *  D       (input) DOUBLE PRECISION array, dimension (N)
                     75: *          The n diagonal elements of the tridiagonal matrix A.
                     76: *
                     77: *  E       (input) DOUBLE PRECISION array, dimension (N-1)
                     78: *          The (n-1) subdiagonal elements of the tridiagonal matrix A.
                     79: *
                     80: *  DF      (input or output) DOUBLE PRECISION array, dimension (N)
                     81: *          If FACT = 'F', then DF is an input argument and on entry
                     82: *          contains the n diagonal elements of the diagonal matrix D
                     83: *          from the L*D*L**T factorization of A.
                     84: *          If FACT = 'N', then DF is an output argument and on exit
                     85: *          contains the n diagonal elements of the diagonal matrix D
                     86: *          from the L*D*L**T factorization of A.
                     87: *
                     88: *  EF      (input or output) DOUBLE PRECISION array, dimension (N-1)
                     89: *          If FACT = 'F', then EF is an input argument and on entry
                     90: *          contains the (n-1) subdiagonal elements of the unit
                     91: *          bidiagonal factor L from the L*D*L**T factorization of A.
                     92: *          If FACT = 'N', then EF is an output argument and on exit
                     93: *          contains the (n-1) subdiagonal elements of the unit
                     94: *          bidiagonal factor L from the L*D*L**T factorization of A.
                     95: *
                     96: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
                     97: *          The N-by-NRHS right hand side matrix B.
                     98: *
                     99: *  LDB     (input) INTEGER
                    100: *          The leading dimension of the array B.  LDB >= max(1,N).
                    101: *
                    102: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
                    103: *          If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X.
                    104: *
                    105: *  LDX     (input) INTEGER
                    106: *          The leading dimension of the array X.  LDX >= max(1,N).
                    107: *
                    108: *  RCOND   (output) DOUBLE PRECISION
                    109: *          The reciprocal condition number of the matrix A.  If RCOND
                    110: *          is less than the machine precision (in particular, if
                    111: *          RCOND = 0), the matrix is singular to working precision.
                    112: *          This condition is indicated by a return code of INFO > 0.
                    113: *
                    114: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    115: *          The forward error bound for each solution vector
                    116: *          X(j) (the j-th column of the solution matrix X).
                    117: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    118: *          is an estimated upper bound for the magnitude of the largest
                    119: *          element in (X(j) - XTRUE) divided by the magnitude of the
                    120: *          largest element in X(j).
                    121: *
                    122: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    123: *          The componentwise relative backward error of each solution
                    124: *          vector X(j) (i.e., the smallest relative change in any
                    125: *          element of A or B that makes X(j) an exact solution).
                    126: *
                    127: *  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
                    128: *
                    129: *  INFO    (output) INTEGER
                    130: *          = 0:  successful exit
                    131: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    132: *          > 0:  if INFO = i, and i is
                    133: *                <= N:  the leading minor of order i of A is
                    134: *                       not positive definite, so the factorization
                    135: *                       could not be completed, and the solution has not
                    136: *                       been computed. RCOND = 0 is returned.
                    137: *                = N+1: U is nonsingular, but RCOND is less than machine
                    138: *                       precision, meaning that the matrix is singular
                    139: *                       to working precision.  Nevertheless, the
                    140: *                       solution and error bounds are computed because
                    141: *                       there are a number of situations where the
                    142: *                       computed solution can be more accurate than the
                    143: *                       value of RCOND would suggest.
                    144: *
                    145: *  =====================================================================
                    146: *
                    147: *     .. Parameters ..
                    148:       DOUBLE PRECISION   ZERO
                    149:       PARAMETER          ( ZERO = 0.0D+0 )
                    150: *     ..
                    151: *     .. Local Scalars ..
                    152:       LOGICAL            NOFACT
                    153:       DOUBLE PRECISION   ANORM
                    154: *     ..
                    155: *     .. External Functions ..
                    156:       LOGICAL            LSAME
                    157:       DOUBLE PRECISION   DLAMCH, DLANST
                    158:       EXTERNAL           LSAME, DLAMCH, DLANST
                    159: *     ..
                    160: *     .. External Subroutines ..
                    161:       EXTERNAL           DCOPY, DLACPY, DPTCON, DPTRFS, DPTTRF, DPTTRS,
                    162:      $                   XERBLA
                    163: *     ..
                    164: *     .. Intrinsic Functions ..
                    165:       INTRINSIC          MAX
                    166: *     ..
                    167: *     .. Executable Statements ..
                    168: *
                    169: *     Test the input parameters.
                    170: *
                    171:       INFO = 0
                    172:       NOFACT = LSAME( FACT, 'N' )
                    173:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
                    174:          INFO = -1
                    175:       ELSE IF( N.LT.0 ) THEN
                    176:          INFO = -2
                    177:       ELSE IF( NRHS.LT.0 ) THEN
                    178:          INFO = -3
                    179:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    180:          INFO = -9
                    181:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    182:          INFO = -11
                    183:       END IF
                    184:       IF( INFO.NE.0 ) THEN
                    185:          CALL XERBLA( 'DPTSVX', -INFO )
                    186:          RETURN
                    187:       END IF
                    188: *
                    189:       IF( NOFACT ) THEN
                    190: *
                    191: *        Compute the L*D*L' (or U'*D*U) factorization of A.
                    192: *
                    193:          CALL DCOPY( N, D, 1, DF, 1 )
                    194:          IF( N.GT.1 )
                    195:      $      CALL DCOPY( N-1, E, 1, EF, 1 )
                    196:          CALL DPTTRF( N, DF, EF, INFO )
                    197: *
                    198: *        Return if INFO is non-zero.
                    199: *
                    200:          IF( INFO.GT.0 )THEN
                    201:             RCOND = ZERO
                    202:             RETURN
                    203:          END IF
                    204:       END IF
                    205: *
                    206: *     Compute the norm of the matrix A.
                    207: *
                    208:       ANORM = DLANST( '1', N, D, E )
                    209: *
                    210: *     Compute the reciprocal of the condition number of A.
                    211: *
                    212:       CALL DPTCON( N, DF, EF, ANORM, RCOND, WORK, INFO )
                    213: *
                    214: *     Compute the solution vectors X.
                    215: *
                    216:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    217:       CALL DPTTRS( N, NRHS, DF, EF, X, LDX, INFO )
                    218: *
                    219: *     Use iterative refinement to improve the computed solutions and
                    220: *     compute error bounds and backward error estimates for them.
                    221: *
                    222:       CALL DPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR,
                    223:      $             WORK, INFO )
                    224: *
                    225: *     Set INFO = N+1 if the matrix is singular to working precision.
                    226: *
                    227:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    228:      $   INFO = N + 1
                    229: *
                    230:       RETURN
                    231: *
                    232: *     End of DPTSVX
                    233: *
                    234:       END

CVSweb interface <joel.bertrand@systella.fr>