Annotation of rpl/lapack/lapack/dptsvx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
        !             2:      $                   RCOND, FERR, BERR, WORK, INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          FACT
        !            11:       INTEGER            INFO, LDB, LDX, N, NRHS
        !            12:       DOUBLE PRECISION   RCOND
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
        !            16:      $                   E( * ), EF( * ), FERR( * ), WORK( * ),
        !            17:      $                   X( LDX, * )
        !            18: *     ..
        !            19: *
        !            20: *  Purpose
        !            21: *  =======
        !            22: *
        !            23: *  DPTSVX uses the factorization A = L*D*L**T to compute the solution
        !            24: *  to a real system of linear equations A*X = B, where A is an N-by-N
        !            25: *  symmetric positive definite tridiagonal matrix and X and B are
        !            26: *  N-by-NRHS matrices.
        !            27: *
        !            28: *  Error bounds on the solution and a condition estimate are also
        !            29: *  provided.
        !            30: *
        !            31: *  Description
        !            32: *  ===========
        !            33: *
        !            34: *  The following steps are performed:
        !            35: *
        !            36: *  1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L
        !            37: *     is a unit lower bidiagonal matrix and D is diagonal.  The
        !            38: *     factorization can also be regarded as having the form
        !            39: *     A = U**T*D*U.
        !            40: *
        !            41: *  2. If the leading i-by-i principal minor is not positive definite,
        !            42: *     then the routine returns with INFO = i. Otherwise, the factored
        !            43: *     form of A is used to estimate the condition number of the matrix
        !            44: *     A.  If the reciprocal of the condition number is less than machine
        !            45: *     precision, INFO = N+1 is returned as a warning, but the routine
        !            46: *     still goes on to solve for X and compute error bounds as
        !            47: *     described below.
        !            48: *
        !            49: *  3. The system of equations is solved for X using the factored form
        !            50: *     of A.
        !            51: *
        !            52: *  4. Iterative refinement is applied to improve the computed solution
        !            53: *     matrix and calculate error bounds and backward error estimates
        !            54: *     for it.
        !            55: *
        !            56: *  Arguments
        !            57: *  =========
        !            58: *
        !            59: *  FACT    (input) CHARACTER*1
        !            60: *          Specifies whether or not the factored form of A has been
        !            61: *          supplied on entry.
        !            62: *          = 'F':  On entry, DF and EF contain the factored form of A.
        !            63: *                  D, E, DF, and EF will not be modified.
        !            64: *          = 'N':  The matrix A will be copied to DF and EF and
        !            65: *                  factored.
        !            66: *
        !            67: *  N       (input) INTEGER
        !            68: *          The order of the matrix A.  N >= 0.
        !            69: *
        !            70: *  NRHS    (input) INTEGER
        !            71: *          The number of right hand sides, i.e., the number of columns
        !            72: *          of the matrices B and X.  NRHS >= 0.
        !            73: *
        !            74: *  D       (input) DOUBLE PRECISION array, dimension (N)
        !            75: *          The n diagonal elements of the tridiagonal matrix A.
        !            76: *
        !            77: *  E       (input) DOUBLE PRECISION array, dimension (N-1)
        !            78: *          The (n-1) subdiagonal elements of the tridiagonal matrix A.
        !            79: *
        !            80: *  DF      (input or output) DOUBLE PRECISION array, dimension (N)
        !            81: *          If FACT = 'F', then DF is an input argument and on entry
        !            82: *          contains the n diagonal elements of the diagonal matrix D
        !            83: *          from the L*D*L**T factorization of A.
        !            84: *          If FACT = 'N', then DF is an output argument and on exit
        !            85: *          contains the n diagonal elements of the diagonal matrix D
        !            86: *          from the L*D*L**T factorization of A.
        !            87: *
        !            88: *  EF      (input or output) DOUBLE PRECISION array, dimension (N-1)
        !            89: *          If FACT = 'F', then EF is an input argument and on entry
        !            90: *          contains the (n-1) subdiagonal elements of the unit
        !            91: *          bidiagonal factor L from the L*D*L**T factorization of A.
        !            92: *          If FACT = 'N', then EF is an output argument and on exit
        !            93: *          contains the (n-1) subdiagonal elements of the unit
        !            94: *          bidiagonal factor L from the L*D*L**T factorization of A.
        !            95: *
        !            96: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
        !            97: *          The N-by-NRHS right hand side matrix B.
        !            98: *
        !            99: *  LDB     (input) INTEGER
        !           100: *          The leading dimension of the array B.  LDB >= max(1,N).
        !           101: *
        !           102: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
        !           103: *          If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X.
        !           104: *
        !           105: *  LDX     (input) INTEGER
        !           106: *          The leading dimension of the array X.  LDX >= max(1,N).
        !           107: *
        !           108: *  RCOND   (output) DOUBLE PRECISION
        !           109: *          The reciprocal condition number of the matrix A.  If RCOND
        !           110: *          is less than the machine precision (in particular, if
        !           111: *          RCOND = 0), the matrix is singular to working precision.
        !           112: *          This condition is indicated by a return code of INFO > 0.
        !           113: *
        !           114: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           115: *          The forward error bound for each solution vector
        !           116: *          X(j) (the j-th column of the solution matrix X).
        !           117: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           118: *          is an estimated upper bound for the magnitude of the largest
        !           119: *          element in (X(j) - XTRUE) divided by the magnitude of the
        !           120: *          largest element in X(j).
        !           121: *
        !           122: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           123: *          The componentwise relative backward error of each solution
        !           124: *          vector X(j) (i.e., the smallest relative change in any
        !           125: *          element of A or B that makes X(j) an exact solution).
        !           126: *
        !           127: *  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
        !           128: *
        !           129: *  INFO    (output) INTEGER
        !           130: *          = 0:  successful exit
        !           131: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           132: *          > 0:  if INFO = i, and i is
        !           133: *                <= N:  the leading minor of order i of A is
        !           134: *                       not positive definite, so the factorization
        !           135: *                       could not be completed, and the solution has not
        !           136: *                       been computed. RCOND = 0 is returned.
        !           137: *                = N+1: U is nonsingular, but RCOND is less than machine
        !           138: *                       precision, meaning that the matrix is singular
        !           139: *                       to working precision.  Nevertheless, the
        !           140: *                       solution and error bounds are computed because
        !           141: *                       there are a number of situations where the
        !           142: *                       computed solution can be more accurate than the
        !           143: *                       value of RCOND would suggest.
        !           144: *
        !           145: *  =====================================================================
        !           146: *
        !           147: *     .. Parameters ..
        !           148:       DOUBLE PRECISION   ZERO
        !           149:       PARAMETER          ( ZERO = 0.0D+0 )
        !           150: *     ..
        !           151: *     .. Local Scalars ..
        !           152:       LOGICAL            NOFACT
        !           153:       DOUBLE PRECISION   ANORM
        !           154: *     ..
        !           155: *     .. External Functions ..
        !           156:       LOGICAL            LSAME
        !           157:       DOUBLE PRECISION   DLAMCH, DLANST
        !           158:       EXTERNAL           LSAME, DLAMCH, DLANST
        !           159: *     ..
        !           160: *     .. External Subroutines ..
        !           161:       EXTERNAL           DCOPY, DLACPY, DPTCON, DPTRFS, DPTTRF, DPTTRS,
        !           162:      $                   XERBLA
        !           163: *     ..
        !           164: *     .. Intrinsic Functions ..
        !           165:       INTRINSIC          MAX
        !           166: *     ..
        !           167: *     .. Executable Statements ..
        !           168: *
        !           169: *     Test the input parameters.
        !           170: *
        !           171:       INFO = 0
        !           172:       NOFACT = LSAME( FACT, 'N' )
        !           173:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
        !           174:          INFO = -1
        !           175:       ELSE IF( N.LT.0 ) THEN
        !           176:          INFO = -2
        !           177:       ELSE IF( NRHS.LT.0 ) THEN
        !           178:          INFO = -3
        !           179:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           180:          INFO = -9
        !           181:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           182:          INFO = -11
        !           183:       END IF
        !           184:       IF( INFO.NE.0 ) THEN
        !           185:          CALL XERBLA( 'DPTSVX', -INFO )
        !           186:          RETURN
        !           187:       END IF
        !           188: *
        !           189:       IF( NOFACT ) THEN
        !           190: *
        !           191: *        Compute the L*D*L' (or U'*D*U) factorization of A.
        !           192: *
        !           193:          CALL DCOPY( N, D, 1, DF, 1 )
        !           194:          IF( N.GT.1 )
        !           195:      $      CALL DCOPY( N-1, E, 1, EF, 1 )
        !           196:          CALL DPTTRF( N, DF, EF, INFO )
        !           197: *
        !           198: *        Return if INFO is non-zero.
        !           199: *
        !           200:          IF( INFO.GT.0 )THEN
        !           201:             RCOND = ZERO
        !           202:             RETURN
        !           203:          END IF
        !           204:       END IF
        !           205: *
        !           206: *     Compute the norm of the matrix A.
        !           207: *
        !           208:       ANORM = DLANST( '1', N, D, E )
        !           209: *
        !           210: *     Compute the reciprocal of the condition number of A.
        !           211: *
        !           212:       CALL DPTCON( N, DF, EF, ANORM, RCOND, WORK, INFO )
        !           213: *
        !           214: *     Compute the solution vectors X.
        !           215: *
        !           216:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
        !           217:       CALL DPTTRS( N, NRHS, DF, EF, X, LDX, INFO )
        !           218: *
        !           219: *     Use iterative refinement to improve the computed solutions and
        !           220: *     compute error bounds and backward error estimates for them.
        !           221: *
        !           222:       CALL DPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR,
        !           223:      $             WORK, INFO )
        !           224: *
        !           225: *     Set INFO = N+1 if the matrix is singular to working precision.
        !           226: *
        !           227:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
        !           228:      $   INFO = N + 1
        !           229: *
        !           230:       RETURN
        !           231: *
        !           232: *     End of DPTSVX
        !           233: *
        !           234:       END

CVSweb interface <joel.bertrand@systella.fr>