Annotation of rpl/lapack/lapack/dptrfs.f, revision 1.10

1.9       bertrand    1: *> \brief \b DPTRFS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DPTRFS + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dptrfs.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dptrfs.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dptrfs.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
                     22: *                          BERR, WORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDB, LDX, N, NRHS
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
                     29: *      $                   E( * ), EF( * ), FERR( * ), WORK( * ),
                     30: *      $                   X( LDX, * )
                     31: *       ..
                     32: *  
                     33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DPTRFS improves the computed solution to a system of linear
                     40: *> equations when the coefficient matrix is symmetric positive definite
                     41: *> and tridiagonal, and provides error bounds and backward error
                     42: *> estimates for the solution.
                     43: *> \endverbatim
                     44: *
                     45: *  Arguments:
                     46: *  ==========
                     47: *
                     48: *> \param[in] N
                     49: *> \verbatim
                     50: *>          N is INTEGER
                     51: *>          The order of the matrix A.  N >= 0.
                     52: *> \endverbatim
                     53: *>
                     54: *> \param[in] NRHS
                     55: *> \verbatim
                     56: *>          NRHS is INTEGER
                     57: *>          The number of right hand sides, i.e., the number of columns
                     58: *>          of the matrix B.  NRHS >= 0.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] D
                     62: *> \verbatim
                     63: *>          D is DOUBLE PRECISION array, dimension (N)
                     64: *>          The n diagonal elements of the tridiagonal matrix A.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] E
                     68: *> \verbatim
                     69: *>          E is DOUBLE PRECISION array, dimension (N-1)
                     70: *>          The (n-1) subdiagonal elements of the tridiagonal matrix A.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] DF
                     74: *> \verbatim
                     75: *>          DF is DOUBLE PRECISION array, dimension (N)
                     76: *>          The n diagonal elements of the diagonal matrix D from the
                     77: *>          factorization computed by DPTTRF.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] EF
                     81: *> \verbatim
                     82: *>          EF is DOUBLE PRECISION array, dimension (N-1)
                     83: *>          The (n-1) subdiagonal elements of the unit bidiagonal factor
                     84: *>          L from the factorization computed by DPTTRF.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in] B
                     88: *> \verbatim
                     89: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                     90: *>          The right hand side matrix B.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in] LDB
                     94: *> \verbatim
                     95: *>          LDB is INTEGER
                     96: *>          The leading dimension of the array B.  LDB >= max(1,N).
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in,out] X
                    100: *> \verbatim
                    101: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    102: *>          On entry, the solution matrix X, as computed by DPTTRS.
                    103: *>          On exit, the improved solution matrix X.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in] LDX
                    107: *> \verbatim
                    108: *>          LDX is INTEGER
                    109: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[out] FERR
                    113: *> \verbatim
                    114: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    115: *>          The forward error bound for each solution vector
                    116: *>          X(j) (the j-th column of the solution matrix X).
                    117: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    118: *>          is an estimated upper bound for the magnitude of the largest
                    119: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    120: *>          largest element in X(j).
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[out] BERR
                    124: *> \verbatim
                    125: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    126: *>          The componentwise relative backward error of each solution
                    127: *>          vector X(j) (i.e., the smallest relative change in
                    128: *>          any element of A or B that makes X(j) an exact solution).
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[out] WORK
                    132: *> \verbatim
                    133: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[out] INFO
                    137: *> \verbatim
                    138: *>          INFO is INTEGER
                    139: *>          = 0:  successful exit
                    140: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    141: *> \endverbatim
                    142: *
                    143: *> \par Internal Parameters:
                    144: *  =========================
                    145: *>
                    146: *> \verbatim
                    147: *>  ITMAX is the maximum number of steps of iterative refinement.
                    148: *> \endverbatim
                    149: *
                    150: *  Authors:
                    151: *  ========
                    152: *
                    153: *> \author Univ. of Tennessee 
                    154: *> \author Univ. of California Berkeley 
                    155: *> \author Univ. of Colorado Denver 
                    156: *> \author NAG Ltd. 
                    157: *
                    158: *> \date November 2011
                    159: *
                    160: *> \ingroup doubleOTHERcomputational
                    161: *
                    162: *  =====================================================================
1.1       bertrand  163:       SUBROUTINE DPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
                    164:      $                   BERR, WORK, INFO )
                    165: *
1.9       bertrand  166: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  167: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    168: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  169: *     November 2011
1.1       bertrand  170: *
                    171: *     .. Scalar Arguments ..
                    172:       INTEGER            INFO, LDB, LDX, N, NRHS
                    173: *     ..
                    174: *     .. Array Arguments ..
                    175:       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
                    176:      $                   E( * ), EF( * ), FERR( * ), WORK( * ),
                    177:      $                   X( LDX, * )
                    178: *     ..
                    179: *
                    180: *  =====================================================================
                    181: *
                    182: *     .. Parameters ..
                    183:       INTEGER            ITMAX
                    184:       PARAMETER          ( ITMAX = 5 )
                    185:       DOUBLE PRECISION   ZERO
                    186:       PARAMETER          ( ZERO = 0.0D+0 )
                    187:       DOUBLE PRECISION   ONE
                    188:       PARAMETER          ( ONE = 1.0D+0 )
                    189:       DOUBLE PRECISION   TWO
                    190:       PARAMETER          ( TWO = 2.0D+0 )
                    191:       DOUBLE PRECISION   THREE
                    192:       PARAMETER          ( THREE = 3.0D+0 )
                    193: *     ..
                    194: *     .. Local Scalars ..
                    195:       INTEGER            COUNT, I, IX, J, NZ
                    196:       DOUBLE PRECISION   BI, CX, DX, EPS, EX, LSTRES, S, SAFE1, SAFE2,
                    197:      $                   SAFMIN
                    198: *     ..
                    199: *     .. External Subroutines ..
                    200:       EXTERNAL           DAXPY, DPTTRS, XERBLA
                    201: *     ..
                    202: *     .. Intrinsic Functions ..
                    203:       INTRINSIC          ABS, MAX
                    204: *     ..
                    205: *     .. External Functions ..
                    206:       INTEGER            IDAMAX
                    207:       DOUBLE PRECISION   DLAMCH
                    208:       EXTERNAL           IDAMAX, DLAMCH
                    209: *     ..
                    210: *     .. Executable Statements ..
                    211: *
                    212: *     Test the input parameters.
                    213: *
                    214:       INFO = 0
                    215:       IF( N.LT.0 ) THEN
                    216:          INFO = -1
                    217:       ELSE IF( NRHS.LT.0 ) THEN
                    218:          INFO = -2
                    219:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    220:          INFO = -8
                    221:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    222:          INFO = -10
                    223:       END IF
                    224:       IF( INFO.NE.0 ) THEN
                    225:          CALL XERBLA( 'DPTRFS', -INFO )
                    226:          RETURN
                    227:       END IF
                    228: *
                    229: *     Quick return if possible
                    230: *
                    231:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    232:          DO 10 J = 1, NRHS
                    233:             FERR( J ) = ZERO
                    234:             BERR( J ) = ZERO
                    235:    10    CONTINUE
                    236:          RETURN
                    237:       END IF
                    238: *
                    239: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    240: *
                    241:       NZ = 4
                    242:       EPS = DLAMCH( 'Epsilon' )
                    243:       SAFMIN = DLAMCH( 'Safe minimum' )
                    244:       SAFE1 = NZ*SAFMIN
                    245:       SAFE2 = SAFE1 / EPS
                    246: *
                    247: *     Do for each right hand side
                    248: *
                    249:       DO 90 J = 1, NRHS
                    250: *
                    251:          COUNT = 1
                    252:          LSTRES = THREE
                    253:    20    CONTINUE
                    254: *
                    255: *        Loop until stopping criterion is satisfied.
                    256: *
                    257: *        Compute residual R = B - A * X.  Also compute
                    258: *        abs(A)*abs(x) + abs(b) for use in the backward error bound.
                    259: *
                    260:          IF( N.EQ.1 ) THEN
                    261:             BI = B( 1, J )
                    262:             DX = D( 1 )*X( 1, J )
                    263:             WORK( N+1 ) = BI - DX
                    264:             WORK( 1 ) = ABS( BI ) + ABS( DX )
                    265:          ELSE
                    266:             BI = B( 1, J )
                    267:             DX = D( 1 )*X( 1, J )
                    268:             EX = E( 1 )*X( 2, J )
                    269:             WORK( N+1 ) = BI - DX - EX
                    270:             WORK( 1 ) = ABS( BI ) + ABS( DX ) + ABS( EX )
                    271:             DO 30 I = 2, N - 1
                    272:                BI = B( I, J )
                    273:                CX = E( I-1 )*X( I-1, J )
                    274:                DX = D( I )*X( I, J )
                    275:                EX = E( I )*X( I+1, J )
                    276:                WORK( N+I ) = BI - CX - DX - EX
                    277:                WORK( I ) = ABS( BI ) + ABS( CX ) + ABS( DX ) + ABS( EX )
                    278:    30       CONTINUE
                    279:             BI = B( N, J )
                    280:             CX = E( N-1 )*X( N-1, J )
                    281:             DX = D( N )*X( N, J )
                    282:             WORK( N+N ) = BI - CX - DX
                    283:             WORK( N ) = ABS( BI ) + ABS( CX ) + ABS( DX )
                    284:          END IF
                    285: *
                    286: *        Compute componentwise relative backward error from formula
                    287: *
                    288: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    289: *
                    290: *        where abs(Z) is the componentwise absolute value of the matrix
                    291: *        or vector Z.  If the i-th component of the denominator is less
                    292: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    293: *        numerator and denominator before dividing.
                    294: *
                    295:          S = ZERO
                    296:          DO 40 I = 1, N
                    297:             IF( WORK( I ).GT.SAFE2 ) THEN
                    298:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
                    299:             ELSE
                    300:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
                    301:      $             ( WORK( I )+SAFE1 ) )
                    302:             END IF
                    303:    40    CONTINUE
                    304:          BERR( J ) = S
                    305: *
                    306: *        Test stopping criterion. Continue iterating if
                    307: *           1) The residual BERR(J) is larger than machine epsilon, and
                    308: *           2) BERR(J) decreased by at least a factor of 2 during the
                    309: *              last iteration, and
                    310: *           3) At most ITMAX iterations tried.
                    311: *
                    312:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    313:      $       COUNT.LE.ITMAX ) THEN
                    314: *
                    315: *           Update solution and try again.
                    316: *
                    317:             CALL DPTTRS( N, 1, DF, EF, WORK( N+1 ), N, INFO )
                    318:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
                    319:             LSTRES = BERR( J )
                    320:             COUNT = COUNT + 1
                    321:             GO TO 20
                    322:          END IF
                    323: *
                    324: *        Bound error from formula
                    325: *
                    326: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    327: *        norm( abs(inv(A))*
                    328: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    329: *
                    330: *        where
                    331: *          norm(Z) is the magnitude of the largest component of Z
                    332: *          inv(A) is the inverse of A
                    333: *          abs(Z) is the componentwise absolute value of the matrix or
                    334: *             vector Z
                    335: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    336: *          EPS is machine epsilon
                    337: *
                    338: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    339: *        is incremented by SAFE1 if the i-th component of
                    340: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    341: *
                    342:          DO 50 I = 1, N
                    343:             IF( WORK( I ).GT.SAFE2 ) THEN
                    344:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
                    345:             ELSE
                    346:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
                    347:             END IF
                    348:    50    CONTINUE
                    349:          IX = IDAMAX( N, WORK, 1 )
                    350:          FERR( J ) = WORK( IX )
                    351: *
                    352: *        Estimate the norm of inv(A).
                    353: *
                    354: *        Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
                    355: *
                    356: *           m(i,j) =  abs(A(i,j)), i = j,
                    357: *           m(i,j) = -abs(A(i,j)), i .ne. j,
                    358: *
1.8       bertrand  359: *        and e = [ 1, 1, ..., 1 ]**T.  Note M(A) = M(L)*D*M(L)**T.
1.1       bertrand  360: *
                    361: *        Solve M(L) * x = e.
                    362: *
                    363:          WORK( 1 ) = ONE
                    364:          DO 60 I = 2, N
                    365:             WORK( I ) = ONE + WORK( I-1 )*ABS( EF( I-1 ) )
                    366:    60    CONTINUE
                    367: *
1.8       bertrand  368: *        Solve D * M(L)**T * x = b.
1.1       bertrand  369: *
                    370:          WORK( N ) = WORK( N ) / DF( N )
                    371:          DO 70 I = N - 1, 1, -1
                    372:             WORK( I ) = WORK( I ) / DF( I ) + WORK( I+1 )*ABS( EF( I ) )
                    373:    70    CONTINUE
                    374: *
                    375: *        Compute norm(inv(A)) = max(x(i)), 1<=i<=n.
                    376: *
                    377:          IX = IDAMAX( N, WORK, 1 )
                    378:          FERR( J ) = FERR( J )*ABS( WORK( IX ) )
                    379: *
                    380: *        Normalize error.
                    381: *
                    382:          LSTRES = ZERO
                    383:          DO 80 I = 1, N
                    384:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
                    385:    80    CONTINUE
                    386:          IF( LSTRES.NE.ZERO )
                    387:      $      FERR( J ) = FERR( J ) / LSTRES
                    388: *
                    389:    90 CONTINUE
                    390: *
                    391:       RETURN
                    392: *
                    393: *     End of DPTRFS
                    394: *
                    395:       END

CVSweb interface <joel.bertrand@systella.fr>