File:  [local] / rpl / lapack / lapack / dpstrf.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:23 2012 UTC (11 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b DPSTRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DPSTRF + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpstrf.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpstrf.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpstrf.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       DOUBLE PRECISION   TOL
   25: *       INTEGER            INFO, LDA, N, RANK
   26: *       CHARACTER          UPLO
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), WORK( 2*N )
   30: *       INTEGER            PIV( N )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DPSTRF computes the Cholesky factorization with complete
   40: *> pivoting of a real symmetric positive semidefinite matrix A.
   41: *>
   42: *> The factorization has the form
   43: *>    P**T * A * P = U**T * U ,  if UPLO = 'U',
   44: *>    P**T * A * P = L  * L**T,  if UPLO = 'L',
   45: *> where U is an upper triangular matrix and L is lower triangular, and
   46: *> P is stored as vector PIV.
   47: *>
   48: *> This algorithm does not attempt to check that A is positive
   49: *> semidefinite. This version of the algorithm calls level 3 BLAS.
   50: *> \endverbatim
   51: *
   52: *  Arguments:
   53: *  ==========
   54: *
   55: *> \param[in] UPLO
   56: *> \verbatim
   57: *>          UPLO is CHARACTER*1
   58: *>          Specifies whether the upper or lower triangular part of the
   59: *>          symmetric matrix A is stored.
   60: *>          = 'U':  Upper triangular
   61: *>          = 'L':  Lower triangular
   62: *> \endverbatim
   63: *>
   64: *> \param[in] N
   65: *> \verbatim
   66: *>          N is INTEGER
   67: *>          The order of the matrix A.  N >= 0.
   68: *> \endverbatim
   69: *>
   70: *> \param[in,out] A
   71: *> \verbatim
   72: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   73: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   74: *>          n by n upper triangular part of A contains the upper
   75: *>          triangular part of the matrix A, and the strictly lower
   76: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   77: *>          leading n by n lower triangular part of A contains the lower
   78: *>          triangular part of the matrix A, and the strictly upper
   79: *>          triangular part of A is not referenced.
   80: *>
   81: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
   82: *>          factorization as above.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] LDA
   86: *> \verbatim
   87: *>          LDA is INTEGER
   88: *>          The leading dimension of the array A.  LDA >= max(1,N).
   89: *> \endverbatim
   90: *>
   91: *> \param[out] PIV
   92: *> \verbatim
   93: *>          PIV is INTEGER array, dimension (N)
   94: *>          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
   95: *> \endverbatim
   96: *>
   97: *> \param[out] RANK
   98: *> \verbatim
   99: *>          RANK is INTEGER
  100: *>          The rank of A given by the number of steps the algorithm
  101: *>          completed.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] TOL
  105: *> \verbatim
  106: *>          TOL is DOUBLE PRECISION
  107: *>          User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
  108: *>          will be used. The algorithm terminates at the (K-1)st step
  109: *>          if the pivot <= TOL.
  110: *> \endverbatim
  111: *>
  112: *> \param[out] WORK
  113: *> \verbatim
  114: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
  115: *>          Work space.
  116: *> \endverbatim
  117: *>
  118: *> \param[out] INFO
  119: *> \verbatim
  120: *>          INFO is INTEGER
  121: *>          < 0: If INFO = -K, the K-th argument had an illegal value,
  122: *>          = 0: algorithm completed successfully, and
  123: *>          > 0: the matrix A is either rank deficient with computed rank
  124: *>               as returned in RANK, or is indefinite.  See Section 7 of
  125: *>               LAPACK Working Note #161 for further information.
  126: *> \endverbatim
  127: *
  128: *  Authors:
  129: *  ========
  130: *
  131: *> \author Univ. of Tennessee 
  132: *> \author Univ. of California Berkeley 
  133: *> \author Univ. of Colorado Denver 
  134: *> \author NAG Ltd. 
  135: *
  136: *> \date November 2011
  137: *
  138: *> \ingroup doubleOTHERcomputational
  139: *
  140: *  =====================================================================
  141:       SUBROUTINE DPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  142: *
  143: *  -- LAPACK computational routine (version 3.4.0) --
  144: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  145: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146: *     November 2011
  147: *
  148: *     .. Scalar Arguments ..
  149:       DOUBLE PRECISION   TOL
  150:       INTEGER            INFO, LDA, N, RANK
  151:       CHARACTER          UPLO
  152: *     ..
  153: *     .. Array Arguments ..
  154:       DOUBLE PRECISION   A( LDA, * ), WORK( 2*N )
  155:       INTEGER            PIV( N )
  156: *     ..
  157: *
  158: *  =====================================================================
  159: *
  160: *     .. Parameters ..
  161:       DOUBLE PRECISION   ONE, ZERO
  162:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  163: *     ..
  164: *     .. Local Scalars ..
  165:       DOUBLE PRECISION   AJJ, DSTOP, DTEMP
  166:       INTEGER            I, ITEMP, J, JB, K, NB, PVT
  167:       LOGICAL            UPPER
  168: *     ..
  169: *     .. External Functions ..
  170:       DOUBLE PRECISION   DLAMCH
  171:       INTEGER            ILAENV
  172:       LOGICAL            LSAME, DISNAN
  173:       EXTERNAL           DLAMCH, ILAENV, LSAME, DISNAN
  174: *     ..
  175: *     .. External Subroutines ..
  176:       EXTERNAL           DGEMV, DPSTF2, DSCAL, DSWAP, DSYRK, XERBLA
  177: *     ..
  178: *     .. Intrinsic Functions ..
  179:       INTRINSIC          MAX, MIN, SQRT, MAXLOC
  180: *     ..
  181: *     .. Executable Statements ..
  182: *
  183: *     Test the input parameters.
  184: *
  185:       INFO = 0
  186:       UPPER = LSAME( UPLO, 'U' )
  187:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  188:          INFO = -1
  189:       ELSE IF( N.LT.0 ) THEN
  190:          INFO = -2
  191:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  192:          INFO = -4
  193:       END IF
  194:       IF( INFO.NE.0 ) THEN
  195:          CALL XERBLA( 'DPSTRF', -INFO )
  196:          RETURN
  197:       END IF
  198: *
  199: *     Quick return if possible
  200: *
  201:       IF( N.EQ.0 )
  202:      $   RETURN
  203: *
  204: *     Get block size
  205: *
  206:       NB = ILAENV( 1, 'DPOTRF', UPLO, N, -1, -1, -1 )
  207:       IF( NB.LE.1 .OR. NB.GE.N ) THEN
  208: *
  209: *        Use unblocked code
  210: *
  211:          CALL DPSTF2( UPLO, N, A( 1, 1 ), LDA, PIV, RANK, TOL, WORK,
  212:      $                INFO )
  213:          GO TO 200
  214: *
  215:       ELSE
  216: *
  217: *     Initialize PIV
  218: *
  219:          DO 100 I = 1, N
  220:             PIV( I ) = I
  221:   100    CONTINUE
  222: *
  223: *     Compute stopping value
  224: *
  225:          PVT = 1
  226:          AJJ = A( PVT, PVT )
  227:          DO I = 2, N
  228:             IF( A( I, I ).GT.AJJ ) THEN
  229:                PVT = I
  230:                AJJ = A( PVT, PVT )
  231:             END IF
  232:          END DO
  233:          IF( AJJ.EQ.ZERO.OR.DISNAN( AJJ ) ) THEN
  234:             RANK = 0
  235:             INFO = 1
  236:             GO TO 200
  237:          END IF
  238: *
  239: *     Compute stopping value if not supplied
  240: *
  241:          IF( TOL.LT.ZERO ) THEN
  242:             DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
  243:          ELSE
  244:             DSTOP = TOL
  245:          END IF
  246: *
  247: *
  248:          IF( UPPER ) THEN
  249: *
  250: *           Compute the Cholesky factorization P**T * A * P = U**T * U
  251: *
  252:             DO 140 K = 1, N, NB
  253: *
  254: *              Account for last block not being NB wide
  255: *
  256:                JB = MIN( NB, N-K+1 )
  257: *
  258: *              Set relevant part of first half of WORK to zero,
  259: *              holds dot products
  260: *
  261:                DO 110 I = K, N
  262:                   WORK( I ) = 0
  263:   110          CONTINUE
  264: *
  265:                DO 130 J = K, K + JB - 1
  266: *
  267: *              Find pivot, test for exit, else swap rows and columns
  268: *              Update dot products, compute possible pivots which are
  269: *              stored in the second half of WORK
  270: *
  271:                   DO 120 I = J, N
  272: *
  273:                      IF( J.GT.K ) THEN
  274:                         WORK( I ) = WORK( I ) + A( J-1, I )**2
  275:                      END IF
  276:                      WORK( N+I ) = A( I, I ) - WORK( I )
  277: *
  278:   120             CONTINUE
  279: *
  280:                   IF( J.GT.1 ) THEN
  281:                      ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  282:                      PVT = ITEMP + J - 1
  283:                      AJJ = WORK( N+PVT )
  284:                      IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  285:                         A( J, J ) = AJJ
  286:                         GO TO 190
  287:                      END IF
  288:                   END IF
  289: *
  290:                   IF( J.NE.PVT ) THEN
  291: *
  292: *                    Pivot OK, so can now swap pivot rows and columns
  293: *
  294:                      A( PVT, PVT ) = A( J, J )
  295:                      CALL DSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
  296:                      IF( PVT.LT.N )
  297:      $                  CALL DSWAP( N-PVT, A( J, PVT+1 ), LDA,
  298:      $                              A( PVT, PVT+1 ), LDA )
  299:                      CALL DSWAP( PVT-J-1, A( J, J+1 ), LDA,
  300:      $                           A( J+1, PVT ), 1 )
  301: *
  302: *                    Swap dot products and PIV
  303: *
  304:                      DTEMP = WORK( J )
  305:                      WORK( J ) = WORK( PVT )
  306:                      WORK( PVT ) = DTEMP
  307:                      ITEMP = PIV( PVT )
  308:                      PIV( PVT ) = PIV( J )
  309:                      PIV( J ) = ITEMP
  310:                   END IF
  311: *
  312:                   AJJ = SQRT( AJJ )
  313:                   A( J, J ) = AJJ
  314: *
  315: *                 Compute elements J+1:N of row J.
  316: *
  317:                   IF( J.LT.N ) THEN
  318:                      CALL DGEMV( 'Trans', J-K, N-J, -ONE, A( K, J+1 ),
  319:      $                           LDA, A( K, J ), 1, ONE, A( J, J+1 ),
  320:      $                           LDA )
  321:                      CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  322:                   END IF
  323: *
  324:   130          CONTINUE
  325: *
  326: *              Update trailing matrix, J already incremented
  327: *
  328:                IF( K+JB.LE.N ) THEN
  329:                   CALL DSYRK( 'Upper', 'Trans', N-J+1, JB, -ONE,
  330:      $                        A( K, J ), LDA, ONE, A( J, J ), LDA )
  331:                END IF
  332: *
  333:   140       CONTINUE
  334: *
  335:          ELSE
  336: *
  337: *        Compute the Cholesky factorization P**T * A * P = L * L**T
  338: *
  339:             DO 180 K = 1, N, NB
  340: *
  341: *              Account for last block not being NB wide
  342: *
  343:                JB = MIN( NB, N-K+1 )
  344: *
  345: *              Set relevant part of first half of WORK to zero,
  346: *              holds dot products
  347: *
  348:                DO 150 I = K, N
  349:                   WORK( I ) = 0
  350:   150          CONTINUE
  351: *
  352:                DO 170 J = K, K + JB - 1
  353: *
  354: *              Find pivot, test for exit, else swap rows and columns
  355: *              Update dot products, compute possible pivots which are
  356: *              stored in the second half of WORK
  357: *
  358:                   DO 160 I = J, N
  359: *
  360:                      IF( J.GT.K ) THEN
  361:                         WORK( I ) = WORK( I ) + A( I, J-1 )**2
  362:                      END IF
  363:                      WORK( N+I ) = A( I, I ) - WORK( I )
  364: *
  365:   160             CONTINUE
  366: *
  367:                   IF( J.GT.1 ) THEN
  368:                      ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  369:                      PVT = ITEMP + J - 1
  370:                      AJJ = WORK( N+PVT )
  371:                      IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  372:                         A( J, J ) = AJJ
  373:                         GO TO 190
  374:                      END IF
  375:                   END IF
  376: *
  377:                   IF( J.NE.PVT ) THEN
  378: *
  379: *                    Pivot OK, so can now swap pivot rows and columns
  380: *
  381:                      A( PVT, PVT ) = A( J, J )
  382:                      CALL DSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
  383:                      IF( PVT.LT.N )
  384:      $                  CALL DSWAP( N-PVT, A( PVT+1, J ), 1,
  385:      $                              A( PVT+1, PVT ), 1 )
  386:                      CALL DSWAP( PVT-J-1, A( J+1, J ), 1, A( PVT, J+1 ),
  387:      $                           LDA )
  388: *
  389: *                    Swap dot products and PIV
  390: *
  391:                      DTEMP = WORK( J )
  392:                      WORK( J ) = WORK( PVT )
  393:                      WORK( PVT ) = DTEMP
  394:                      ITEMP = PIV( PVT )
  395:                      PIV( PVT ) = PIV( J )
  396:                      PIV( J ) = ITEMP
  397:                   END IF
  398: *
  399:                   AJJ = SQRT( AJJ )
  400:                   A( J, J ) = AJJ
  401: *
  402: *                 Compute elements J+1:N of column J.
  403: *
  404:                   IF( J.LT.N ) THEN
  405:                      CALL DGEMV( 'No Trans', N-J, J-K, -ONE,
  406:      $                           A( J+1, K ), LDA, A( J, K ), LDA, ONE,
  407:      $                           A( J+1, J ), 1 )
  408:                      CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  409:                   END IF
  410: *
  411:   170          CONTINUE
  412: *
  413: *              Update trailing matrix, J already incremented
  414: *
  415:                IF( K+JB.LE.N ) THEN
  416:                   CALL DSYRK( 'Lower', 'No Trans', N-J+1, JB, -ONE,
  417:      $                        A( J, K ), LDA, ONE, A( J, J ), LDA )
  418:                END IF
  419: *
  420:   180       CONTINUE
  421: *
  422:          END IF
  423:       END IF
  424: *
  425: *     Ran to completion, A has full rank
  426: *
  427:       RANK = N
  428: *
  429:       GO TO 200
  430:   190 CONTINUE
  431: *
  432: *     Rank is the number of steps completed.  Set INFO = 1 to signal
  433: *     that the factorization cannot be used to solve a system.
  434: *
  435:       RANK = J - 1
  436:       INFO = 1
  437: *
  438:   200 CONTINUE
  439:       RETURN
  440: *
  441: *     End of DPSTRF
  442: *
  443:       END

CVSweb interface <joel.bertrand@systella.fr>