File:  [local] / rpl / lapack / lapack / dpstrf.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:05 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DPSTRF computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix.
    2: *
    3: *
    4: *  =========== DOCUMENTATION ===========
    5: *
    6: * Online html documentation available at
    7: *            http://www.netlib.org/lapack/explore-html/
    8: *
    9: *> \htmlonly
   10: *> Download DPSTRF + dependencies
   11: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpstrf.f">
   12: *> [TGZ]</a>
   13: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpstrf.f">
   14: *> [ZIP]</a>
   15: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpstrf.f">
   16: *> [TXT]</a>
   17: *> \endhtmlonly
   18: *
   19: *  Definition:
   20: *  ===========
   21: *
   22: *       SUBROUTINE DPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       DOUBLE PRECISION   TOL
   26: *       INTEGER            INFO, LDA, N, RANK
   27: *       CHARACTER          UPLO
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   A( LDA, * ), WORK( 2*N )
   31: *       INTEGER            PIV( N )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> DPSTRF computes the Cholesky factorization with complete
   41: *> pivoting of a real symmetric positive semidefinite matrix A.
   42: *>
   43: *> The factorization has the form
   44: *>    P**T * A * P = U**T * U ,  if UPLO = 'U',
   45: *>    P**T * A * P = L  * L**T,  if UPLO = 'L',
   46: *> where U is an upper triangular matrix and L is lower triangular, and
   47: *> P is stored as vector PIV.
   48: *>
   49: *> This algorithm does not attempt to check that A is positive
   50: *> semidefinite. This version of the algorithm calls level 3 BLAS.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] UPLO
   57: *> \verbatim
   58: *>          UPLO is CHARACTER*1
   59: *>          Specifies whether the upper or lower triangular part of the
   60: *>          symmetric matrix A is stored.
   61: *>          = 'U':  Upper triangular
   62: *>          = 'L':  Lower triangular
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>          The order of the matrix A.  N >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in,out] A
   72: *> \verbatim
   73: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   74: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   75: *>          n by n upper triangular part of A contains the upper
   76: *>          triangular part of the matrix A, and the strictly lower
   77: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   78: *>          leading n by n lower triangular part of A contains the lower
   79: *>          triangular part of the matrix A, and the strictly upper
   80: *>          triangular part of A is not referenced.
   81: *>
   82: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
   83: *>          factorization as above.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] LDA
   87: *> \verbatim
   88: *>          LDA is INTEGER
   89: *>          The leading dimension of the array A.  LDA >= max(1,N).
   90: *> \endverbatim
   91: *>
   92: *> \param[out] PIV
   93: *> \verbatim
   94: *>          PIV is INTEGER array, dimension (N)
   95: *>          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
   96: *> \endverbatim
   97: *>
   98: *> \param[out] RANK
   99: *> \verbatim
  100: *>          RANK is INTEGER
  101: *>          The rank of A given by the number of steps the algorithm
  102: *>          completed.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] TOL
  106: *> \verbatim
  107: *>          TOL is DOUBLE PRECISION
  108: *>          User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
  109: *>          will be used. The algorithm terminates at the (K-1)st step
  110: *>          if the pivot <= TOL.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] WORK
  114: *> \verbatim
  115: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
  116: *>          Work space.
  117: *> \endverbatim
  118: *>
  119: *> \param[out] INFO
  120: *> \verbatim
  121: *>          INFO is INTEGER
  122: *>          < 0: If INFO = -K, the K-th argument had an illegal value,
  123: *>          = 0: algorithm completed successfully, and
  124: *>          > 0: the matrix A is either rank deficient with computed rank
  125: *>               as returned in RANK, or is not positive semidefinite. See
  126: *>               Section 7 of LAPACK Working Note #161 for further
  127: *>               information.
  128: *> \endverbatim
  129: *
  130: *  Authors:
  131: *  ========
  132: *
  133: *> \author Univ. of Tennessee
  134: *> \author Univ. of California Berkeley
  135: *> \author Univ. of Colorado Denver
  136: *> \author NAG Ltd.
  137: *
  138: *> \ingroup doubleOTHERcomputational
  139: *
  140: *  =====================================================================
  141:       SUBROUTINE DPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  142: *
  143: *  -- LAPACK computational routine --
  144: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  145: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146: *
  147: *     .. Scalar Arguments ..
  148:       DOUBLE PRECISION   TOL
  149:       INTEGER            INFO, LDA, N, RANK
  150:       CHARACTER          UPLO
  151: *     ..
  152: *     .. Array Arguments ..
  153:       DOUBLE PRECISION   A( LDA, * ), WORK( 2*N )
  154:       INTEGER            PIV( N )
  155: *     ..
  156: *
  157: *  =====================================================================
  158: *
  159: *     .. Parameters ..
  160:       DOUBLE PRECISION   ONE, ZERO
  161:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  162: *     ..
  163: *     .. Local Scalars ..
  164:       DOUBLE PRECISION   AJJ, DSTOP, DTEMP
  165:       INTEGER            I, ITEMP, J, JB, K, NB, PVT
  166:       LOGICAL            UPPER
  167: *     ..
  168: *     .. External Functions ..
  169:       DOUBLE PRECISION   DLAMCH
  170:       INTEGER            ILAENV
  171:       LOGICAL            LSAME, DISNAN
  172:       EXTERNAL           DLAMCH, ILAENV, LSAME, DISNAN
  173: *     ..
  174: *     .. External Subroutines ..
  175:       EXTERNAL           DGEMV, DPSTF2, DSCAL, DSWAP, DSYRK, XERBLA
  176: *     ..
  177: *     .. Intrinsic Functions ..
  178:       INTRINSIC          MAX, MIN, SQRT, MAXLOC
  179: *     ..
  180: *     .. Executable Statements ..
  181: *
  182: *     Test the input parameters.
  183: *
  184:       INFO = 0
  185:       UPPER = LSAME( UPLO, 'U' )
  186:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  187:          INFO = -1
  188:       ELSE IF( N.LT.0 ) THEN
  189:          INFO = -2
  190:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  191:          INFO = -4
  192:       END IF
  193:       IF( INFO.NE.0 ) THEN
  194:          CALL XERBLA( 'DPSTRF', -INFO )
  195:          RETURN
  196:       END IF
  197: *
  198: *     Quick return if possible
  199: *
  200:       IF( N.EQ.0 )
  201:      $   RETURN
  202: *
  203: *     Get block size
  204: *
  205:       NB = ILAENV( 1, 'DPOTRF', UPLO, N, -1, -1, -1 )
  206:       IF( NB.LE.1 .OR. NB.GE.N ) THEN
  207: *
  208: *        Use unblocked code
  209: *
  210:          CALL DPSTF2( UPLO, N, A( 1, 1 ), LDA, PIV, RANK, TOL, WORK,
  211:      $                INFO )
  212:          GO TO 200
  213: *
  214:       ELSE
  215: *
  216: *     Initialize PIV
  217: *
  218:          DO 100 I = 1, N
  219:             PIV( I ) = I
  220:   100    CONTINUE
  221: *
  222: *     Compute stopping value
  223: *
  224:          PVT = 1
  225:          AJJ = A( PVT, PVT )
  226:          DO I = 2, N
  227:             IF( A( I, I ).GT.AJJ ) THEN
  228:                PVT = I
  229:                AJJ = A( PVT, PVT )
  230:             END IF
  231:          END DO
  232:          IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
  233:             RANK = 0
  234:             INFO = 1
  235:             GO TO 200
  236:          END IF
  237: *
  238: *     Compute stopping value if not supplied
  239: *
  240:          IF( TOL.LT.ZERO ) THEN
  241:             DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
  242:          ELSE
  243:             DSTOP = TOL
  244:          END IF
  245: *
  246: *
  247:          IF( UPPER ) THEN
  248: *
  249: *           Compute the Cholesky factorization P**T * A * P = U**T * U
  250: *
  251:             DO 140 K = 1, N, NB
  252: *
  253: *              Account for last block not being NB wide
  254: *
  255:                JB = MIN( NB, N-K+1 )
  256: *
  257: *              Set relevant part of first half of WORK to zero,
  258: *              holds dot products
  259: *
  260:                DO 110 I = K, N
  261:                   WORK( I ) = 0
  262:   110          CONTINUE
  263: *
  264:                DO 130 J = K, K + JB - 1
  265: *
  266: *              Find pivot, test for exit, else swap rows and columns
  267: *              Update dot products, compute possible pivots which are
  268: *              stored in the second half of WORK
  269: *
  270:                   DO 120 I = J, N
  271: *
  272:                      IF( J.GT.K ) THEN
  273:                         WORK( I ) = WORK( I ) + A( J-1, I )**2
  274:                      END IF
  275:                      WORK( N+I ) = A( I, I ) - WORK( I )
  276: *
  277:   120             CONTINUE
  278: *
  279:                   IF( J.GT.1 ) THEN
  280:                      ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  281:                      PVT = ITEMP + J - 1
  282:                      AJJ = WORK( N+PVT )
  283:                      IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  284:                         A( J, J ) = AJJ
  285:                         GO TO 190
  286:                      END IF
  287:                   END IF
  288: *
  289:                   IF( J.NE.PVT ) THEN
  290: *
  291: *                    Pivot OK, so can now swap pivot rows and columns
  292: *
  293:                      A( PVT, PVT ) = A( J, J )
  294:                      CALL DSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
  295:                      IF( PVT.LT.N )
  296:      $                  CALL DSWAP( N-PVT, A( J, PVT+1 ), LDA,
  297:      $                              A( PVT, PVT+1 ), LDA )
  298:                      CALL DSWAP( PVT-J-1, A( J, J+1 ), LDA,
  299:      $                           A( J+1, PVT ), 1 )
  300: *
  301: *                    Swap dot products and PIV
  302: *
  303:                      DTEMP = WORK( J )
  304:                      WORK( J ) = WORK( PVT )
  305:                      WORK( PVT ) = DTEMP
  306:                      ITEMP = PIV( PVT )
  307:                      PIV( PVT ) = PIV( J )
  308:                      PIV( J ) = ITEMP
  309:                   END IF
  310: *
  311:                   AJJ = SQRT( AJJ )
  312:                   A( J, J ) = AJJ
  313: *
  314: *                 Compute elements J+1:N of row J.
  315: *
  316:                   IF( J.LT.N ) THEN
  317:                      CALL DGEMV( 'Trans', J-K, N-J, -ONE, A( K, J+1 ),
  318:      $                           LDA, A( K, J ), 1, ONE, A( J, J+1 ),
  319:      $                           LDA )
  320:                      CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  321:                   END IF
  322: *
  323:   130          CONTINUE
  324: *
  325: *              Update trailing matrix, J already incremented
  326: *
  327:                IF( K+JB.LE.N ) THEN
  328:                   CALL DSYRK( 'Upper', 'Trans', N-J+1, JB, -ONE,
  329:      $                        A( K, J ), LDA, ONE, A( J, J ), LDA )
  330:                END IF
  331: *
  332:   140       CONTINUE
  333: *
  334:          ELSE
  335: *
  336: *        Compute the Cholesky factorization P**T * A * P = L * L**T
  337: *
  338:             DO 180 K = 1, N, NB
  339: *
  340: *              Account for last block not being NB wide
  341: *
  342:                JB = MIN( NB, N-K+1 )
  343: *
  344: *              Set relevant part of first half of WORK to zero,
  345: *              holds dot products
  346: *
  347:                DO 150 I = K, N
  348:                   WORK( I ) = 0
  349:   150          CONTINUE
  350: *
  351:                DO 170 J = K, K + JB - 1
  352: *
  353: *              Find pivot, test for exit, else swap rows and columns
  354: *              Update dot products, compute possible pivots which are
  355: *              stored in the second half of WORK
  356: *
  357:                   DO 160 I = J, N
  358: *
  359:                      IF( J.GT.K ) THEN
  360:                         WORK( I ) = WORK( I ) + A( I, J-1 )**2
  361:                      END IF
  362:                      WORK( N+I ) = A( I, I ) - WORK( I )
  363: *
  364:   160             CONTINUE
  365: *
  366:                   IF( J.GT.1 ) THEN
  367:                      ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  368:                      PVT = ITEMP + J - 1
  369:                      AJJ = WORK( N+PVT )
  370:                      IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  371:                         A( J, J ) = AJJ
  372:                         GO TO 190
  373:                      END IF
  374:                   END IF
  375: *
  376:                   IF( J.NE.PVT ) THEN
  377: *
  378: *                    Pivot OK, so can now swap pivot rows and columns
  379: *
  380:                      A( PVT, PVT ) = A( J, J )
  381:                      CALL DSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
  382:                      IF( PVT.LT.N )
  383:      $                  CALL DSWAP( N-PVT, A( PVT+1, J ), 1,
  384:      $                              A( PVT+1, PVT ), 1 )
  385:                      CALL DSWAP( PVT-J-1, A( J+1, J ), 1, A( PVT, J+1 ),
  386:      $                           LDA )
  387: *
  388: *                    Swap dot products and PIV
  389: *
  390:                      DTEMP = WORK( J )
  391:                      WORK( J ) = WORK( PVT )
  392:                      WORK( PVT ) = DTEMP
  393:                      ITEMP = PIV( PVT )
  394:                      PIV( PVT ) = PIV( J )
  395:                      PIV( J ) = ITEMP
  396:                   END IF
  397: *
  398:                   AJJ = SQRT( AJJ )
  399:                   A( J, J ) = AJJ
  400: *
  401: *                 Compute elements J+1:N of column J.
  402: *
  403:                   IF( J.LT.N ) THEN
  404:                      CALL DGEMV( 'No Trans', N-J, J-K, -ONE,
  405:      $                           A( J+1, K ), LDA, A( J, K ), LDA, ONE,
  406:      $                           A( J+1, J ), 1 )
  407:                      CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  408:                   END IF
  409: *
  410:   170          CONTINUE
  411: *
  412: *              Update trailing matrix, J already incremented
  413: *
  414:                IF( K+JB.LE.N ) THEN
  415:                   CALL DSYRK( 'Lower', 'No Trans', N-J+1, JB, -ONE,
  416:      $                        A( J, K ), LDA, ONE, A( J, J ), LDA )
  417:                END IF
  418: *
  419:   180       CONTINUE
  420: *
  421:          END IF
  422:       END IF
  423: *
  424: *     Ran to completion, A has full rank
  425: *
  426:       RANK = N
  427: *
  428:       GO TO 200
  429:   190 CONTINUE
  430: *
  431: *     Rank is the number of steps completed.  Set INFO = 1 to signal
  432: *     that the factorization cannot be used to solve a system.
  433: *
  434:       RANK = J - 1
  435:       INFO = 1
  436: *
  437:   200 CONTINUE
  438:       RETURN
  439: *
  440: *     End of DPSTRF
  441: *
  442:       END

CVSweb interface <joel.bertrand@systella.fr>