File:  [local] / rpl / lapack / lapack / dpstf2.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:26 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief \b DPSTF2 computes the Cholesky factorization with complete pivoting of a real symmetric or complex Hermitian positive semi-definite matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DPSTF2 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpstf2.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpstf2.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpstf2.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       DOUBLE PRECISION   TOL
   25: *       INTEGER            INFO, LDA, N, RANK
   26: *       CHARACTER          UPLO
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), WORK( 2*N )
   30: *       INTEGER            PIV( N )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DPSTF2 computes the Cholesky factorization with complete
   40: *> pivoting of a real symmetric positive semidefinite matrix A.
   41: *>
   42: *> The factorization has the form
   43: *>    P**T * A * P = U**T * U ,  if UPLO = 'U',
   44: *>    P**T * A * P = L  * L**T,  if UPLO = 'L',
   45: *> where U is an upper triangular matrix and L is lower triangular, and
   46: *> P is stored as vector PIV.
   47: *>
   48: *> This algorithm does not attempt to check that A is positive
   49: *> semidefinite. This version of the algorithm calls level 2 BLAS.
   50: *> \endverbatim
   51: *
   52: *  Arguments:
   53: *  ==========
   54: *
   55: *> \param[in] UPLO
   56: *> \verbatim
   57: *>          UPLO is CHARACTER*1
   58: *>          Specifies whether the upper or lower triangular part of the
   59: *>          symmetric matrix A is stored.
   60: *>          = 'U':  Upper triangular
   61: *>          = 'L':  Lower triangular
   62: *> \endverbatim
   63: *>
   64: *> \param[in] N
   65: *> \verbatim
   66: *>          N is INTEGER
   67: *>          The order of the matrix A.  N >= 0.
   68: *> \endverbatim
   69: *>
   70: *> \param[in,out] A
   71: *> \verbatim
   72: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   73: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   74: *>          n by n upper triangular part of A contains the upper
   75: *>          triangular part of the matrix A, and the strictly lower
   76: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   77: *>          leading n by n lower triangular part of A contains the lower
   78: *>          triangular part of the matrix A, and the strictly upper
   79: *>          triangular part of A is not referenced.
   80: *>
   81: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
   82: *>          factorization as above.
   83: *> \endverbatim
   84: *>
   85: *> \param[out] PIV
   86: *> \verbatim
   87: *>          PIV is INTEGER array, dimension (N)
   88: *>          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
   89: *> \endverbatim
   90: *>
   91: *> \param[out] RANK
   92: *> \verbatim
   93: *>          RANK is INTEGER
   94: *>          The rank of A given by the number of steps the algorithm
   95: *>          completed.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] TOL
   99: *> \verbatim
  100: *>          TOL is DOUBLE PRECISION
  101: *>          User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) )
  102: *>          will be used. The algorithm terminates at the (K-1)st step
  103: *>          if the pivot <= TOL.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] LDA
  107: *> \verbatim
  108: *>          LDA is INTEGER
  109: *>          The leading dimension of the array A.  LDA >= max(1,N).
  110: *> \endverbatim
  111: *>
  112: *> \param[out] WORK
  113: *> \verbatim
  114: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
  115: *>          Work space.
  116: *> \endverbatim
  117: *>
  118: *> \param[out] INFO
  119: *> \verbatim
  120: *>          INFO is INTEGER
  121: *>          < 0: If INFO = -K, the K-th argument had an illegal value,
  122: *>          = 0: algorithm completed successfully, and
  123: *>          > 0: the matrix A is either rank deficient with computed rank
  124: *>               as returned in RANK, or is indefinite.  See Section 7 of
  125: *>               LAPACK Working Note #161 for further information.
  126: *> \endverbatim
  127: *
  128: *  Authors:
  129: *  ========
  130: *
  131: *> \author Univ. of Tennessee 
  132: *> \author Univ. of California Berkeley 
  133: *> \author Univ. of Colorado Denver 
  134: *> \author NAG Ltd. 
  135: *
  136: *> \date September 2012
  137: *
  138: *> \ingroup doubleOTHERcomputational
  139: *
  140: *  =====================================================================
  141:       SUBROUTINE DPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  142: *
  143: *  -- LAPACK computational routine (version 3.4.2) --
  144: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  145: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146: *     September 2012
  147: *
  148: *     .. Scalar Arguments ..
  149:       DOUBLE PRECISION   TOL
  150:       INTEGER            INFO, LDA, N, RANK
  151:       CHARACTER          UPLO
  152: *     ..
  153: *     .. Array Arguments ..
  154:       DOUBLE PRECISION   A( LDA, * ), WORK( 2*N )
  155:       INTEGER            PIV( N )
  156: *     ..
  157: *
  158: *  =====================================================================
  159: *
  160: *     .. Parameters ..
  161:       DOUBLE PRECISION   ONE, ZERO
  162:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  163: *     ..
  164: *     .. Local Scalars ..
  165:       DOUBLE PRECISION   AJJ, DSTOP, DTEMP
  166:       INTEGER            I, ITEMP, J, PVT
  167:       LOGICAL            UPPER
  168: *     ..
  169: *     .. External Functions ..
  170:       DOUBLE PRECISION   DLAMCH
  171:       LOGICAL            LSAME, DISNAN
  172:       EXTERNAL           DLAMCH, LSAME, DISNAN
  173: *     ..
  174: *     .. External Subroutines ..
  175:       EXTERNAL           DGEMV, DSCAL, DSWAP, XERBLA
  176: *     ..
  177: *     .. Intrinsic Functions ..
  178:       INTRINSIC          MAX, SQRT, MAXLOC
  179: *     ..
  180: *     .. Executable Statements ..
  181: *
  182: *     Test the input parameters
  183: *
  184:       INFO = 0
  185:       UPPER = LSAME( UPLO, 'U' )
  186:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  187:          INFO = -1
  188:       ELSE IF( N.LT.0 ) THEN
  189:          INFO = -2
  190:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  191:          INFO = -4
  192:       END IF
  193:       IF( INFO.NE.0 ) THEN
  194:          CALL XERBLA( 'DPSTF2', -INFO )
  195:          RETURN
  196:       END IF
  197: *
  198: *     Quick return if possible
  199: *
  200:       IF( N.EQ.0 )
  201:      $   RETURN
  202: *
  203: *     Initialize PIV
  204: *
  205:       DO 100 I = 1, N
  206:          PIV( I ) = I
  207:   100 CONTINUE
  208: *
  209: *     Compute stopping value
  210: *
  211:       PVT = 1
  212:       AJJ = A( PVT, PVT )
  213:       DO I = 2, N
  214:          IF( A( I, I ).GT.AJJ ) THEN
  215:             PVT = I
  216:             AJJ = A( PVT, PVT )
  217:          END IF
  218:       END DO
  219:       IF( AJJ.EQ.ZERO.OR.DISNAN( AJJ ) ) THEN
  220:          RANK = 0
  221:          INFO = 1
  222:          GO TO 170
  223:       END IF
  224: *
  225: *     Compute stopping value if not supplied
  226: *
  227:       IF( TOL.LT.ZERO ) THEN
  228:          DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
  229:       ELSE
  230:          DSTOP = TOL
  231:       END IF
  232: *
  233: *     Set first half of WORK to zero, holds dot products
  234: *
  235:       DO 110 I = 1, N
  236:          WORK( I ) = 0
  237:   110 CONTINUE
  238: *
  239:       IF( UPPER ) THEN
  240: *
  241: *        Compute the Cholesky factorization P**T * A * P = U**T * U
  242: *
  243:          DO 130 J = 1, N
  244: *
  245: *        Find pivot, test for exit, else swap rows and columns
  246: *        Update dot products, compute possible pivots which are
  247: *        stored in the second half of WORK
  248: *
  249:             DO 120 I = J, N
  250: *
  251:                IF( J.GT.1 ) THEN
  252:                   WORK( I ) = WORK( I ) + A( J-1, I )**2
  253:                END IF
  254:                WORK( N+I ) = A( I, I ) - WORK( I )
  255: *
  256:   120       CONTINUE
  257: *
  258:             IF( J.GT.1 ) THEN
  259:                ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  260:                PVT = ITEMP + J - 1
  261:                AJJ = WORK( N+PVT )
  262:                IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  263:                   A( J, J ) = AJJ
  264:                   GO TO 160
  265:                END IF
  266:             END IF
  267: *
  268:             IF( J.NE.PVT ) THEN
  269: *
  270: *              Pivot OK, so can now swap pivot rows and columns
  271: *
  272:                A( PVT, PVT ) = A( J, J )
  273:                CALL DSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
  274:                IF( PVT.LT.N )
  275:      $            CALL DSWAP( N-PVT, A( J, PVT+1 ), LDA,
  276:      $                        A( PVT, PVT+1 ), LDA )
  277:                CALL DSWAP( PVT-J-1, A( J, J+1 ), LDA, A( J+1, PVT ), 1 )
  278: *
  279: *              Swap dot products and PIV
  280: *
  281:                DTEMP = WORK( J )
  282:                WORK( J ) = WORK( PVT )
  283:                WORK( PVT ) = DTEMP
  284:                ITEMP = PIV( PVT )
  285:                PIV( PVT ) = PIV( J )
  286:                PIV( J ) = ITEMP
  287:             END IF
  288: *
  289:             AJJ = SQRT( AJJ )
  290:             A( J, J ) = AJJ
  291: *
  292: *           Compute elements J+1:N of row J
  293: *
  294:             IF( J.LT.N ) THEN
  295:                CALL DGEMV( 'Trans', J-1, N-J, -ONE, A( 1, J+1 ), LDA,
  296:      $                     A( 1, J ), 1, ONE, A( J, J+1 ), LDA )
  297:                CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  298:             END IF
  299: *
  300:   130    CONTINUE
  301: *
  302:       ELSE
  303: *
  304: *        Compute the Cholesky factorization P**T * A * P = L * L**T
  305: *
  306:          DO 150 J = 1, N
  307: *
  308: *        Find pivot, test for exit, else swap rows and columns
  309: *        Update dot products, compute possible pivots which are
  310: *        stored in the second half of WORK
  311: *
  312:             DO 140 I = J, N
  313: *
  314:                IF( J.GT.1 ) THEN
  315:                   WORK( I ) = WORK( I ) + A( I, J-1 )**2
  316:                END IF
  317:                WORK( N+I ) = A( I, I ) - WORK( I )
  318: *
  319:   140       CONTINUE
  320: *
  321:             IF( J.GT.1 ) THEN
  322:                ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  323:                PVT = ITEMP + J - 1
  324:                AJJ = WORK( N+PVT )
  325:                IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  326:                   A( J, J ) = AJJ
  327:                   GO TO 160
  328:                END IF
  329:             END IF
  330: *
  331:             IF( J.NE.PVT ) THEN
  332: *
  333: *              Pivot OK, so can now swap pivot rows and columns
  334: *
  335:                A( PVT, PVT ) = A( J, J )
  336:                CALL DSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
  337:                IF( PVT.LT.N )
  338:      $            CALL DSWAP( N-PVT, A( PVT+1, J ), 1, A( PVT+1, PVT ),
  339:      $                        1 )
  340:                CALL DSWAP( PVT-J-1, A( J+1, J ), 1, A( PVT, J+1 ), LDA )
  341: *
  342: *              Swap dot products and PIV
  343: *
  344:                DTEMP = WORK( J )
  345:                WORK( J ) = WORK( PVT )
  346:                WORK( PVT ) = DTEMP
  347:                ITEMP = PIV( PVT )
  348:                PIV( PVT ) = PIV( J )
  349:                PIV( J ) = ITEMP
  350:             END IF
  351: *
  352:             AJJ = SQRT( AJJ )
  353:             A( J, J ) = AJJ
  354: *
  355: *           Compute elements J+1:N of column J
  356: *
  357:             IF( J.LT.N ) THEN
  358:                CALL DGEMV( 'No Trans', N-J, J-1, -ONE, A( J+1, 1 ), LDA,
  359:      $                     A( J, 1 ), LDA, ONE, A( J+1, J ), 1 )
  360:                CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  361:             END IF
  362: *
  363:   150    CONTINUE
  364: *
  365:       END IF
  366: *
  367: *     Ran to completion, A has full rank
  368: *
  369:       RANK = N
  370: *
  371:       GO TO 170
  372:   160 CONTINUE
  373: *
  374: *     Rank is number of steps completed.  Set INFO = 1 to signal
  375: *     that the factorization cannot be used to solve a system.
  376: *
  377:       RANK = J - 1
  378:       INFO = 1
  379: *
  380:   170 CONTINUE
  381:       RETURN
  382: *
  383: *     End of DPSTF2
  384: *
  385:       END

CVSweb interface <joel.bertrand@systella.fr>