Annotation of rpl/lapack/lapack/dpstf2.f, revision 1.17

1.12      bertrand    1: *> \brief \b DPSTF2 computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix.
1.6       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.6       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download DPSTF2 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpstf2.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpstf2.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpstf2.f">
1.6       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.6       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
1.14      bertrand   22: *
1.6       bertrand   23: *       .. Scalar Arguments ..
                     24: *       DOUBLE PRECISION   TOL
                     25: *       INTEGER            INFO, LDA, N, RANK
                     26: *       CHARACTER          UPLO
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   A( LDA, * ), WORK( 2*N )
                     30: *       INTEGER            PIV( N )
                     31: *       ..
1.14      bertrand   32: *
1.6       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DPSTF2 computes the Cholesky factorization with complete
                     40: *> pivoting of a real symmetric positive semidefinite matrix A.
                     41: *>
                     42: *> The factorization has the form
                     43: *>    P**T * A * P = U**T * U ,  if UPLO = 'U',
                     44: *>    P**T * A * P = L  * L**T,  if UPLO = 'L',
                     45: *> where U is an upper triangular matrix and L is lower triangular, and
                     46: *> P is stored as vector PIV.
                     47: *>
                     48: *> This algorithm does not attempt to check that A is positive
                     49: *> semidefinite. This version of the algorithm calls level 2 BLAS.
                     50: *> \endverbatim
                     51: *
                     52: *  Arguments:
                     53: *  ==========
                     54: *
                     55: *> \param[in] UPLO
                     56: *> \verbatim
                     57: *>          UPLO is CHARACTER*1
                     58: *>          Specifies whether the upper or lower triangular part of the
                     59: *>          symmetric matrix A is stored.
                     60: *>          = 'U':  Upper triangular
                     61: *>          = 'L':  Lower triangular
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] N
                     65: *> \verbatim
                     66: *>          N is INTEGER
                     67: *>          The order of the matrix A.  N >= 0.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in,out] A
                     71: *> \verbatim
                     72: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     73: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     74: *>          n by n upper triangular part of A contains the upper
                     75: *>          triangular part of the matrix A, and the strictly lower
                     76: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     77: *>          leading n by n lower triangular part of A contains the lower
                     78: *>          triangular part of the matrix A, and the strictly upper
                     79: *>          triangular part of A is not referenced.
                     80: *>
                     81: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
                     82: *>          factorization as above.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[out] PIV
                     86: *> \verbatim
                     87: *>          PIV is INTEGER array, dimension (N)
                     88: *>          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[out] RANK
                     92: *> \verbatim
                     93: *>          RANK is INTEGER
                     94: *>          The rank of A given by the number of steps the algorithm
                     95: *>          completed.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] TOL
                     99: *> \verbatim
                    100: *>          TOL is DOUBLE PRECISION
                    101: *>          User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) )
                    102: *>          will be used. The algorithm terminates at the (K-1)st step
                    103: *>          if the pivot <= TOL.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in] LDA
                    107: *> \verbatim
                    108: *>          LDA is INTEGER
                    109: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[out] WORK
                    113: *> \verbatim
                    114: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
                    115: *>          Work space.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[out] INFO
                    119: *> \verbatim
                    120: *>          INFO is INTEGER
                    121: *>          < 0: If INFO = -K, the K-th argument had an illegal value,
                    122: *>          = 0: algorithm completed successfully, and
                    123: *>          > 0: the matrix A is either rank deficient with computed rank
1.12      bertrand  124: *>               as returned in RANK, or is not positive semidefinite. See
                    125: *>               Section 7 of LAPACK Working Note #161 for further
                    126: *>               information.
1.6       bertrand  127: *> \endverbatim
                    128: *
                    129: *  Authors:
                    130: *  ========
                    131: *
1.14      bertrand  132: *> \author Univ. of Tennessee
                    133: *> \author Univ. of California Berkeley
                    134: *> \author Univ. of Colorado Denver
                    135: *> \author NAG Ltd.
1.6       bertrand  136: *
                    137: *> \ingroup doubleOTHERcomputational
                    138: *
                    139: *  =====================================================================
1.1       bertrand  140:       SUBROUTINE DPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
                    141: *
1.17    ! bertrand  142: *  -- LAPACK computational routine --
1.6       bertrand  143: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    144: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.1       bertrand  145: *
                    146: *     .. Scalar Arguments ..
                    147:       DOUBLE PRECISION   TOL
                    148:       INTEGER            INFO, LDA, N, RANK
                    149:       CHARACTER          UPLO
                    150: *     ..
                    151: *     .. Array Arguments ..
                    152:       DOUBLE PRECISION   A( LDA, * ), WORK( 2*N )
                    153:       INTEGER            PIV( N )
                    154: *     ..
                    155: *
                    156: *  =====================================================================
                    157: *
                    158: *     .. Parameters ..
                    159:       DOUBLE PRECISION   ONE, ZERO
                    160:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    161: *     ..
                    162: *     .. Local Scalars ..
                    163:       DOUBLE PRECISION   AJJ, DSTOP, DTEMP
                    164:       INTEGER            I, ITEMP, J, PVT
                    165:       LOGICAL            UPPER
                    166: *     ..
                    167: *     .. External Functions ..
                    168:       DOUBLE PRECISION   DLAMCH
                    169:       LOGICAL            LSAME, DISNAN
                    170:       EXTERNAL           DLAMCH, LSAME, DISNAN
                    171: *     ..
                    172: *     .. External Subroutines ..
                    173:       EXTERNAL           DGEMV, DSCAL, DSWAP, XERBLA
                    174: *     ..
                    175: *     .. Intrinsic Functions ..
                    176:       INTRINSIC          MAX, SQRT, MAXLOC
                    177: *     ..
                    178: *     .. Executable Statements ..
                    179: *
                    180: *     Test the input parameters
                    181: *
                    182:       INFO = 0
                    183:       UPPER = LSAME( UPLO, 'U' )
                    184:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    185:          INFO = -1
                    186:       ELSE IF( N.LT.0 ) THEN
                    187:          INFO = -2
                    188:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    189:          INFO = -4
                    190:       END IF
                    191:       IF( INFO.NE.0 ) THEN
                    192:          CALL XERBLA( 'DPSTF2', -INFO )
                    193:          RETURN
                    194:       END IF
                    195: *
                    196: *     Quick return if possible
                    197: *
                    198:       IF( N.EQ.0 )
                    199:      $   RETURN
                    200: *
                    201: *     Initialize PIV
                    202: *
                    203:       DO 100 I = 1, N
                    204:          PIV( I ) = I
                    205:   100 CONTINUE
                    206: *
                    207: *     Compute stopping value
                    208: *
                    209:       PVT = 1
                    210:       AJJ = A( PVT, PVT )
                    211:       DO I = 2, N
                    212:          IF( A( I, I ).GT.AJJ ) THEN
                    213:             PVT = I
                    214:             AJJ = A( PVT, PVT )
                    215:          END IF
                    216:       END DO
1.12      bertrand  217:       IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
1.1       bertrand  218:          RANK = 0
                    219:          INFO = 1
                    220:          GO TO 170
                    221:       END IF
                    222: *
                    223: *     Compute stopping value if not supplied
                    224: *
                    225:       IF( TOL.LT.ZERO ) THEN
                    226:          DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
                    227:       ELSE
                    228:          DSTOP = TOL
                    229:       END IF
                    230: *
                    231: *     Set first half of WORK to zero, holds dot products
                    232: *
                    233:       DO 110 I = 1, N
                    234:          WORK( I ) = 0
                    235:   110 CONTINUE
                    236: *
                    237:       IF( UPPER ) THEN
                    238: *
1.5       bertrand  239: *        Compute the Cholesky factorization P**T * A * P = U**T * U
1.1       bertrand  240: *
                    241:          DO 130 J = 1, N
                    242: *
                    243: *        Find pivot, test for exit, else swap rows and columns
                    244: *        Update dot products, compute possible pivots which are
                    245: *        stored in the second half of WORK
                    246: *
                    247:             DO 120 I = J, N
                    248: *
                    249:                IF( J.GT.1 ) THEN
                    250:                   WORK( I ) = WORK( I ) + A( J-1, I )**2
                    251:                END IF
                    252:                WORK( N+I ) = A( I, I ) - WORK( I )
                    253: *
                    254:   120       CONTINUE
                    255: *
                    256:             IF( J.GT.1 ) THEN
                    257:                ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
                    258:                PVT = ITEMP + J - 1
                    259:                AJJ = WORK( N+PVT )
                    260:                IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
                    261:                   A( J, J ) = AJJ
                    262:                   GO TO 160
                    263:                END IF
                    264:             END IF
                    265: *
                    266:             IF( J.NE.PVT ) THEN
                    267: *
                    268: *              Pivot OK, so can now swap pivot rows and columns
                    269: *
                    270:                A( PVT, PVT ) = A( J, J )
                    271:                CALL DSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
                    272:                IF( PVT.LT.N )
                    273:      $            CALL DSWAP( N-PVT, A( J, PVT+1 ), LDA,
                    274:      $                        A( PVT, PVT+1 ), LDA )
                    275:                CALL DSWAP( PVT-J-1, A( J, J+1 ), LDA, A( J+1, PVT ), 1 )
                    276: *
                    277: *              Swap dot products and PIV
                    278: *
                    279:                DTEMP = WORK( J )
                    280:                WORK( J ) = WORK( PVT )
                    281:                WORK( PVT ) = DTEMP
                    282:                ITEMP = PIV( PVT )
                    283:                PIV( PVT ) = PIV( J )
                    284:                PIV( J ) = ITEMP
                    285:             END IF
                    286: *
                    287:             AJJ = SQRT( AJJ )
                    288:             A( J, J ) = AJJ
                    289: *
                    290: *           Compute elements J+1:N of row J
                    291: *
                    292:             IF( J.LT.N ) THEN
                    293:                CALL DGEMV( 'Trans', J-1, N-J, -ONE, A( 1, J+1 ), LDA,
                    294:      $                     A( 1, J ), 1, ONE, A( J, J+1 ), LDA )
                    295:                CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
                    296:             END IF
                    297: *
                    298:   130    CONTINUE
                    299: *
                    300:       ELSE
                    301: *
1.5       bertrand  302: *        Compute the Cholesky factorization P**T * A * P = L * L**T
1.1       bertrand  303: *
                    304:          DO 150 J = 1, N
                    305: *
                    306: *        Find pivot, test for exit, else swap rows and columns
                    307: *        Update dot products, compute possible pivots which are
                    308: *        stored in the second half of WORK
                    309: *
                    310:             DO 140 I = J, N
                    311: *
                    312:                IF( J.GT.1 ) THEN
                    313:                   WORK( I ) = WORK( I ) + A( I, J-1 )**2
                    314:                END IF
                    315:                WORK( N+I ) = A( I, I ) - WORK( I )
                    316: *
                    317:   140       CONTINUE
                    318: *
                    319:             IF( J.GT.1 ) THEN
                    320:                ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
                    321:                PVT = ITEMP + J - 1
                    322:                AJJ = WORK( N+PVT )
                    323:                IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
                    324:                   A( J, J ) = AJJ
                    325:                   GO TO 160
                    326:                END IF
                    327:             END IF
                    328: *
                    329:             IF( J.NE.PVT ) THEN
                    330: *
                    331: *              Pivot OK, so can now swap pivot rows and columns
                    332: *
                    333:                A( PVT, PVT ) = A( J, J )
                    334:                CALL DSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
                    335:                IF( PVT.LT.N )
                    336:      $            CALL DSWAP( N-PVT, A( PVT+1, J ), 1, A( PVT+1, PVT ),
                    337:      $                        1 )
                    338:                CALL DSWAP( PVT-J-1, A( J+1, J ), 1, A( PVT, J+1 ), LDA )
                    339: *
                    340: *              Swap dot products and PIV
                    341: *
                    342:                DTEMP = WORK( J )
                    343:                WORK( J ) = WORK( PVT )
                    344:                WORK( PVT ) = DTEMP
                    345:                ITEMP = PIV( PVT )
                    346:                PIV( PVT ) = PIV( J )
                    347:                PIV( J ) = ITEMP
                    348:             END IF
                    349: *
                    350:             AJJ = SQRT( AJJ )
                    351:             A( J, J ) = AJJ
                    352: *
                    353: *           Compute elements J+1:N of column J
                    354: *
                    355:             IF( J.LT.N ) THEN
                    356:                CALL DGEMV( 'No Trans', N-J, J-1, -ONE, A( J+1, 1 ), LDA,
                    357:      $                     A( J, 1 ), LDA, ONE, A( J+1, J ), 1 )
                    358:                CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
                    359:             END IF
                    360: *
                    361:   150    CONTINUE
                    362: *
                    363:       END IF
                    364: *
                    365: *     Ran to completion, A has full rank
                    366: *
                    367:       RANK = N
                    368: *
                    369:       GO TO 170
                    370:   160 CONTINUE
                    371: *
                    372: *     Rank is number of steps completed.  Set INFO = 1 to signal
                    373: *     that the factorization cannot be used to solve a system.
                    374: *
                    375:       RANK = J - 1
                    376:       INFO = 1
                    377: *
                    378:   170 CONTINUE
                    379:       RETURN
                    380: *
                    381: *     End of DPSTF2
                    382: *
                    383:       END

CVSweb interface <joel.bertrand@systella.fr>