Annotation of rpl/lapack/lapack/dpstf2.f, revision 1.16

1.12      bertrand    1: *> \brief \b DPSTF2 computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix.
1.6       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.6       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download DPSTF2 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpstf2.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpstf2.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpstf2.f">
1.6       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.6       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
1.14      bertrand   22: *
1.6       bertrand   23: *       .. Scalar Arguments ..
                     24: *       DOUBLE PRECISION   TOL
                     25: *       INTEGER            INFO, LDA, N, RANK
                     26: *       CHARACTER          UPLO
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   A( LDA, * ), WORK( 2*N )
                     30: *       INTEGER            PIV( N )
                     31: *       ..
1.14      bertrand   32: *
1.6       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DPSTF2 computes the Cholesky factorization with complete
                     40: *> pivoting of a real symmetric positive semidefinite matrix A.
                     41: *>
                     42: *> The factorization has the form
                     43: *>    P**T * A * P = U**T * U ,  if UPLO = 'U',
                     44: *>    P**T * A * P = L  * L**T,  if UPLO = 'L',
                     45: *> where U is an upper triangular matrix and L is lower triangular, and
                     46: *> P is stored as vector PIV.
                     47: *>
                     48: *> This algorithm does not attempt to check that A is positive
                     49: *> semidefinite. This version of the algorithm calls level 2 BLAS.
                     50: *> \endverbatim
                     51: *
                     52: *  Arguments:
                     53: *  ==========
                     54: *
                     55: *> \param[in] UPLO
                     56: *> \verbatim
                     57: *>          UPLO is CHARACTER*1
                     58: *>          Specifies whether the upper or lower triangular part of the
                     59: *>          symmetric matrix A is stored.
                     60: *>          = 'U':  Upper triangular
                     61: *>          = 'L':  Lower triangular
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] N
                     65: *> \verbatim
                     66: *>          N is INTEGER
                     67: *>          The order of the matrix A.  N >= 0.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in,out] A
                     71: *> \verbatim
                     72: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     73: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     74: *>          n by n upper triangular part of A contains the upper
                     75: *>          triangular part of the matrix A, and the strictly lower
                     76: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     77: *>          leading n by n lower triangular part of A contains the lower
                     78: *>          triangular part of the matrix A, and the strictly upper
                     79: *>          triangular part of A is not referenced.
                     80: *>
                     81: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
                     82: *>          factorization as above.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[out] PIV
                     86: *> \verbatim
                     87: *>          PIV is INTEGER array, dimension (N)
                     88: *>          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[out] RANK
                     92: *> \verbatim
                     93: *>          RANK is INTEGER
                     94: *>          The rank of A given by the number of steps the algorithm
                     95: *>          completed.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] TOL
                     99: *> \verbatim
                    100: *>          TOL is DOUBLE PRECISION
                    101: *>          User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) )
                    102: *>          will be used. The algorithm terminates at the (K-1)st step
                    103: *>          if the pivot <= TOL.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in] LDA
                    107: *> \verbatim
                    108: *>          LDA is INTEGER
                    109: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[out] WORK
                    113: *> \verbatim
                    114: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
                    115: *>          Work space.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[out] INFO
                    119: *> \verbatim
                    120: *>          INFO is INTEGER
                    121: *>          < 0: If INFO = -K, the K-th argument had an illegal value,
                    122: *>          = 0: algorithm completed successfully, and
                    123: *>          > 0: the matrix A is either rank deficient with computed rank
1.12      bertrand  124: *>               as returned in RANK, or is not positive semidefinite. See
                    125: *>               Section 7 of LAPACK Working Note #161 for further
                    126: *>               information.
1.6       bertrand  127: *> \endverbatim
                    128: *
                    129: *  Authors:
                    130: *  ========
                    131: *
1.14      bertrand  132: *> \author Univ. of Tennessee
                    133: *> \author Univ. of California Berkeley
                    134: *> \author Univ. of Colorado Denver
                    135: *> \author NAG Ltd.
1.6       bertrand  136: *
1.14      bertrand  137: *> \date December 2016
1.6       bertrand  138: *
                    139: *> \ingroup doubleOTHERcomputational
                    140: *
                    141: *  =====================================================================
1.1       bertrand  142:       SUBROUTINE DPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
                    143: *
1.14      bertrand  144: *  -- LAPACK computational routine (version 3.7.0) --
1.6       bertrand  145: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    146: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.14      bertrand  147: *     December 2016
1.1       bertrand  148: *
                    149: *     .. Scalar Arguments ..
                    150:       DOUBLE PRECISION   TOL
                    151:       INTEGER            INFO, LDA, N, RANK
                    152:       CHARACTER          UPLO
                    153: *     ..
                    154: *     .. Array Arguments ..
                    155:       DOUBLE PRECISION   A( LDA, * ), WORK( 2*N )
                    156:       INTEGER            PIV( N )
                    157: *     ..
                    158: *
                    159: *  =====================================================================
                    160: *
                    161: *     .. Parameters ..
                    162:       DOUBLE PRECISION   ONE, ZERO
                    163:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    164: *     ..
                    165: *     .. Local Scalars ..
                    166:       DOUBLE PRECISION   AJJ, DSTOP, DTEMP
                    167:       INTEGER            I, ITEMP, J, PVT
                    168:       LOGICAL            UPPER
                    169: *     ..
                    170: *     .. External Functions ..
                    171:       DOUBLE PRECISION   DLAMCH
                    172:       LOGICAL            LSAME, DISNAN
                    173:       EXTERNAL           DLAMCH, LSAME, DISNAN
                    174: *     ..
                    175: *     .. External Subroutines ..
                    176:       EXTERNAL           DGEMV, DSCAL, DSWAP, XERBLA
                    177: *     ..
                    178: *     .. Intrinsic Functions ..
                    179:       INTRINSIC          MAX, SQRT, MAXLOC
                    180: *     ..
                    181: *     .. Executable Statements ..
                    182: *
                    183: *     Test the input parameters
                    184: *
                    185:       INFO = 0
                    186:       UPPER = LSAME( UPLO, 'U' )
                    187:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    188:          INFO = -1
                    189:       ELSE IF( N.LT.0 ) THEN
                    190:          INFO = -2
                    191:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    192:          INFO = -4
                    193:       END IF
                    194:       IF( INFO.NE.0 ) THEN
                    195:          CALL XERBLA( 'DPSTF2', -INFO )
                    196:          RETURN
                    197:       END IF
                    198: *
                    199: *     Quick return if possible
                    200: *
                    201:       IF( N.EQ.0 )
                    202:      $   RETURN
                    203: *
                    204: *     Initialize PIV
                    205: *
                    206:       DO 100 I = 1, N
                    207:          PIV( I ) = I
                    208:   100 CONTINUE
                    209: *
                    210: *     Compute stopping value
                    211: *
                    212:       PVT = 1
                    213:       AJJ = A( PVT, PVT )
                    214:       DO I = 2, N
                    215:          IF( A( I, I ).GT.AJJ ) THEN
                    216:             PVT = I
                    217:             AJJ = A( PVT, PVT )
                    218:          END IF
                    219:       END DO
1.12      bertrand  220:       IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
1.1       bertrand  221:          RANK = 0
                    222:          INFO = 1
                    223:          GO TO 170
                    224:       END IF
                    225: *
                    226: *     Compute stopping value if not supplied
                    227: *
                    228:       IF( TOL.LT.ZERO ) THEN
                    229:          DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
                    230:       ELSE
                    231:          DSTOP = TOL
                    232:       END IF
                    233: *
                    234: *     Set first half of WORK to zero, holds dot products
                    235: *
                    236:       DO 110 I = 1, N
                    237:          WORK( I ) = 0
                    238:   110 CONTINUE
                    239: *
                    240:       IF( UPPER ) THEN
                    241: *
1.5       bertrand  242: *        Compute the Cholesky factorization P**T * A * P = U**T * U
1.1       bertrand  243: *
                    244:          DO 130 J = 1, N
                    245: *
                    246: *        Find pivot, test for exit, else swap rows and columns
                    247: *        Update dot products, compute possible pivots which are
                    248: *        stored in the second half of WORK
                    249: *
                    250:             DO 120 I = J, N
                    251: *
                    252:                IF( J.GT.1 ) THEN
                    253:                   WORK( I ) = WORK( I ) + A( J-1, I )**2
                    254:                END IF
                    255:                WORK( N+I ) = A( I, I ) - WORK( I )
                    256: *
                    257:   120       CONTINUE
                    258: *
                    259:             IF( J.GT.1 ) THEN
                    260:                ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
                    261:                PVT = ITEMP + J - 1
                    262:                AJJ = WORK( N+PVT )
                    263:                IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
                    264:                   A( J, J ) = AJJ
                    265:                   GO TO 160
                    266:                END IF
                    267:             END IF
                    268: *
                    269:             IF( J.NE.PVT ) THEN
                    270: *
                    271: *              Pivot OK, so can now swap pivot rows and columns
                    272: *
                    273:                A( PVT, PVT ) = A( J, J )
                    274:                CALL DSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
                    275:                IF( PVT.LT.N )
                    276:      $            CALL DSWAP( N-PVT, A( J, PVT+1 ), LDA,
                    277:      $                        A( PVT, PVT+1 ), LDA )
                    278:                CALL DSWAP( PVT-J-1, A( J, J+1 ), LDA, A( J+1, PVT ), 1 )
                    279: *
                    280: *              Swap dot products and PIV
                    281: *
                    282:                DTEMP = WORK( J )
                    283:                WORK( J ) = WORK( PVT )
                    284:                WORK( PVT ) = DTEMP
                    285:                ITEMP = PIV( PVT )
                    286:                PIV( PVT ) = PIV( J )
                    287:                PIV( J ) = ITEMP
                    288:             END IF
                    289: *
                    290:             AJJ = SQRT( AJJ )
                    291:             A( J, J ) = AJJ
                    292: *
                    293: *           Compute elements J+1:N of row J
                    294: *
                    295:             IF( J.LT.N ) THEN
                    296:                CALL DGEMV( 'Trans', J-1, N-J, -ONE, A( 1, J+1 ), LDA,
                    297:      $                     A( 1, J ), 1, ONE, A( J, J+1 ), LDA )
                    298:                CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
                    299:             END IF
                    300: *
                    301:   130    CONTINUE
                    302: *
                    303:       ELSE
                    304: *
1.5       bertrand  305: *        Compute the Cholesky factorization P**T * A * P = L * L**T
1.1       bertrand  306: *
                    307:          DO 150 J = 1, N
                    308: *
                    309: *        Find pivot, test for exit, else swap rows and columns
                    310: *        Update dot products, compute possible pivots which are
                    311: *        stored in the second half of WORK
                    312: *
                    313:             DO 140 I = J, N
                    314: *
                    315:                IF( J.GT.1 ) THEN
                    316:                   WORK( I ) = WORK( I ) + A( I, J-1 )**2
                    317:                END IF
                    318:                WORK( N+I ) = A( I, I ) - WORK( I )
                    319: *
                    320:   140       CONTINUE
                    321: *
                    322:             IF( J.GT.1 ) THEN
                    323:                ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
                    324:                PVT = ITEMP + J - 1
                    325:                AJJ = WORK( N+PVT )
                    326:                IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
                    327:                   A( J, J ) = AJJ
                    328:                   GO TO 160
                    329:                END IF
                    330:             END IF
                    331: *
                    332:             IF( J.NE.PVT ) THEN
                    333: *
                    334: *              Pivot OK, so can now swap pivot rows and columns
                    335: *
                    336:                A( PVT, PVT ) = A( J, J )
                    337:                CALL DSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
                    338:                IF( PVT.LT.N )
                    339:      $            CALL DSWAP( N-PVT, A( PVT+1, J ), 1, A( PVT+1, PVT ),
                    340:      $                        1 )
                    341:                CALL DSWAP( PVT-J-1, A( J+1, J ), 1, A( PVT, J+1 ), LDA )
                    342: *
                    343: *              Swap dot products and PIV
                    344: *
                    345:                DTEMP = WORK( J )
                    346:                WORK( J ) = WORK( PVT )
                    347:                WORK( PVT ) = DTEMP
                    348:                ITEMP = PIV( PVT )
                    349:                PIV( PVT ) = PIV( J )
                    350:                PIV( J ) = ITEMP
                    351:             END IF
                    352: *
                    353:             AJJ = SQRT( AJJ )
                    354:             A( J, J ) = AJJ
                    355: *
                    356: *           Compute elements J+1:N of column J
                    357: *
                    358:             IF( J.LT.N ) THEN
                    359:                CALL DGEMV( 'No Trans', N-J, J-1, -ONE, A( J+1, 1 ), LDA,
                    360:      $                     A( J, 1 ), LDA, ONE, A( J+1, J ), 1 )
                    361:                CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
                    362:             END IF
                    363: *
                    364:   150    CONTINUE
                    365: *
                    366:       END IF
                    367: *
                    368: *     Ran to completion, A has full rank
                    369: *
                    370:       RANK = N
                    371: *
                    372:       GO TO 170
                    373:   160 CONTINUE
                    374: *
                    375: *     Rank is number of steps completed.  Set INFO = 1 to signal
                    376: *     that the factorization cannot be used to solve a system.
                    377: *
                    378:       RANK = J - 1
                    379:       INFO = 1
                    380: *
                    381:   170 CONTINUE
                    382:       RETURN
                    383: *
                    384: *     End of DPSTF2
                    385: *
                    386:       END

CVSweb interface <joel.bertrand@systella.fr>