File:  [local] / rpl / lapack / lapack / dppsvx.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:38 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief <b> DPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DPPSVX + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dppsvx.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dppsvx.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dppsvx.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB,
   22: *                          X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          EQUED, FACT, UPLO
   26: *       INTEGER            INFO, LDB, LDX, N, NRHS
   27: *       DOUBLE PRECISION   RCOND
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       INTEGER            IWORK( * )
   31: *       DOUBLE PRECISION   AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
   32: *      $                   FERR( * ), S( * ), WORK( * ), X( LDX, * )
   33: *       ..
   34: *  
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> DPPSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
   42: *> compute the solution to a real system of linear equations
   43: *>    A * X = B,
   44: *> where A is an N-by-N symmetric positive definite matrix stored in
   45: *> packed format and X and B are N-by-NRHS matrices.
   46: *>
   47: *> Error bounds on the solution and a condition estimate are also
   48: *> provided.
   49: *> \endverbatim
   50: *
   51: *> \par Description:
   52: *  =================
   53: *>
   54: *> \verbatim
   55: *>
   56: *> The following steps are performed:
   57: *>
   58: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
   59: *>    the system:
   60: *>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
   61: *>    Whether or not the system will be equilibrated depends on the
   62: *>    scaling of the matrix A, but if equilibration is used, A is
   63: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
   64: *>
   65: *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
   66: *>    factor the matrix A (after equilibration if FACT = 'E') as
   67: *>       A = U**T* U,  if UPLO = 'U', or
   68: *>       A = L * L**T,  if UPLO = 'L',
   69: *>    where U is an upper triangular matrix and L is a lower triangular
   70: *>    matrix.
   71: *>
   72: *> 3. If the leading i-by-i principal minor is not positive definite,
   73: *>    then the routine returns with INFO = i. Otherwise, the factored
   74: *>    form of A is used to estimate the condition number of the matrix
   75: *>    A.  If the reciprocal of the condition number is less than machine
   76: *>    precision, INFO = N+1 is returned as a warning, but the routine
   77: *>    still goes on to solve for X and compute error bounds as
   78: *>    described below.
   79: *>
   80: *> 4. The system of equations is solved for X using the factored form
   81: *>    of A.
   82: *>
   83: *> 5. Iterative refinement is applied to improve the computed solution
   84: *>    matrix and calculate error bounds and backward error estimates
   85: *>    for it.
   86: *>
   87: *> 6. If equilibration was used, the matrix X is premultiplied by
   88: *>    diag(S) so that it solves the original system before
   89: *>    equilibration.
   90: *> \endverbatim
   91: *
   92: *  Arguments:
   93: *  ==========
   94: *
   95: *> \param[in] FACT
   96: *> \verbatim
   97: *>          FACT is CHARACTER*1
   98: *>          Specifies whether or not the factored form of the matrix A is
   99: *>          supplied on entry, and if not, whether the matrix A should be
  100: *>          equilibrated before it is factored.
  101: *>          = 'F':  On entry, AFP contains the factored form of A.
  102: *>                  If EQUED = 'Y', the matrix A has been equilibrated
  103: *>                  with scaling factors given by S.  AP and AFP will not
  104: *>                  be modified.
  105: *>          = 'N':  The matrix A will be copied to AFP and factored.
  106: *>          = 'E':  The matrix A will be equilibrated if necessary, then
  107: *>                  copied to AFP and factored.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] UPLO
  111: *> \verbatim
  112: *>          UPLO is CHARACTER*1
  113: *>          = 'U':  Upper triangle of A is stored;
  114: *>          = 'L':  Lower triangle of A is stored.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] N
  118: *> \verbatim
  119: *>          N is INTEGER
  120: *>          The number of linear equations, i.e., the order of the
  121: *>          matrix A.  N >= 0.
  122: *> \endverbatim
  123: *>
  124: *> \param[in] NRHS
  125: *> \verbatim
  126: *>          NRHS is INTEGER
  127: *>          The number of right hand sides, i.e., the number of columns
  128: *>          of the matrices B and X.  NRHS >= 0.
  129: *> \endverbatim
  130: *>
  131: *> \param[in,out] AP
  132: *> \verbatim
  133: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  134: *>          On entry, the upper or lower triangle of the symmetric matrix
  135: *>          A, packed columnwise in a linear array, except if FACT = 'F'
  136: *>          and EQUED = 'Y', then A must contain the equilibrated matrix
  137: *>          diag(S)*A*diag(S).  The j-th column of A is stored in the
  138: *>          array AP as follows:
  139: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  140: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  141: *>          See below for further details.  A is not modified if
  142: *>          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
  143: *>
  144: *>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  145: *>          diag(S)*A*diag(S).
  146: *> \endverbatim
  147: *>
  148: *> \param[in,out] AFP
  149: *> \verbatim
  150: *>          AFP is or output) DOUBLE PRECISION array, dimension
  151: *>                            (N*(N+1)/2)
  152: *>          If FACT = 'F', then AFP is an input argument and on entry
  153: *>          contains the triangular factor U or L from the Cholesky
  154: *>          factorization A = U**T*U or A = L*L**T, in the same storage
  155: *>          format as A.  If EQUED .ne. 'N', then AFP is the factored
  156: *>          form of the equilibrated matrix A.
  157: *>
  158: *>          If FACT = 'N', then AFP is an output argument and on exit
  159: *>          returns the triangular factor U or L from the Cholesky
  160: *>          factorization A = U**T * U or A = L * L**T of the original
  161: *>          matrix A.
  162: *>
  163: *>          If FACT = 'E', then AFP is an output argument and on exit
  164: *>          returns the triangular factor U or L from the Cholesky
  165: *>          factorization A = U**T * U or A = L * L**T of the equilibrated
  166: *>          matrix A (see the description of AP for the form of the
  167: *>          equilibrated matrix).
  168: *> \endverbatim
  169: *>
  170: *> \param[in,out] EQUED
  171: *> \verbatim
  172: *>          EQUED is or output) CHARACTER*1
  173: *>          Specifies the form of equilibration that was done.
  174: *>          = 'N':  No equilibration (always true if FACT = 'N').
  175: *>          = 'Y':  Equilibration was done, i.e., A has been replaced by
  176: *>                  diag(S) * A * diag(S).
  177: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
  178: *>          output argument.
  179: *> \endverbatim
  180: *>
  181: *> \param[in,out] S
  182: *> \verbatim
  183: *>          S is or output) DOUBLE PRECISION array, dimension (N)
  184: *>          The scale factors for A; not accessed if EQUED = 'N'.  S is
  185: *>          an input argument if FACT = 'F'; otherwise, S is an output
  186: *>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
  187: *>          must be positive.
  188: *> \endverbatim
  189: *>
  190: *> \param[in,out] B
  191: *> \verbatim
  192: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  193: *>          On entry, the N-by-NRHS right hand side matrix B.
  194: *>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
  195: *>          B is overwritten by diag(S) * B.
  196: *> \endverbatim
  197: *>
  198: *> \param[in] LDB
  199: *> \verbatim
  200: *>          LDB is INTEGER
  201: *>          The leading dimension of the array B.  LDB >= max(1,N).
  202: *> \endverbatim
  203: *>
  204: *> \param[out] X
  205: *> \verbatim
  206: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  207: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
  208: *>          the original system of equations.  Note that if EQUED = 'Y',
  209: *>          A and B are modified on exit, and the solution to the
  210: *>          equilibrated system is inv(diag(S))*X.
  211: *> \endverbatim
  212: *>
  213: *> \param[in] LDX
  214: *> \verbatim
  215: *>          LDX is INTEGER
  216: *>          The leading dimension of the array X.  LDX >= max(1,N).
  217: *> \endverbatim
  218: *>
  219: *> \param[out] RCOND
  220: *> \verbatim
  221: *>          RCOND is DOUBLE PRECISION
  222: *>          The estimate of the reciprocal condition number of the matrix
  223: *>          A after equilibration (if done).  If RCOND is less than the
  224: *>          machine precision (in particular, if RCOND = 0), the matrix
  225: *>          is singular to working precision.  This condition is
  226: *>          indicated by a return code of INFO > 0.
  227: *> \endverbatim
  228: *>
  229: *> \param[out] FERR
  230: *> \verbatim
  231: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  232: *>          The estimated forward error bound for each solution vector
  233: *>          X(j) (the j-th column of the solution matrix X).
  234: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  235: *>          is an estimated upper bound for the magnitude of the largest
  236: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  237: *>          largest element in X(j).  The estimate is as reliable as
  238: *>          the estimate for RCOND, and is almost always a slight
  239: *>          overestimate of the true error.
  240: *> \endverbatim
  241: *>
  242: *> \param[out] BERR
  243: *> \verbatim
  244: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  245: *>          The componentwise relative backward error of each solution
  246: *>          vector X(j) (i.e., the smallest relative change in
  247: *>          any element of A or B that makes X(j) an exact solution).
  248: *> \endverbatim
  249: *>
  250: *> \param[out] WORK
  251: *> \verbatim
  252: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
  253: *> \endverbatim
  254: *>
  255: *> \param[out] IWORK
  256: *> \verbatim
  257: *>          IWORK is INTEGER array, dimension (N)
  258: *> \endverbatim
  259: *>
  260: *> \param[out] INFO
  261: *> \verbatim
  262: *>          INFO is INTEGER
  263: *>          = 0:  successful exit
  264: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  265: *>          > 0:  if INFO = i, and i is
  266: *>                <= N:  the leading minor of order i of A is
  267: *>                       not positive definite, so the factorization
  268: *>                       could not be completed, and the solution has not
  269: *>                       been computed. RCOND = 0 is returned.
  270: *>                = N+1: U is nonsingular, but RCOND is less than machine
  271: *>                       precision, meaning that the matrix is singular
  272: *>                       to working precision.  Nevertheless, the
  273: *>                       solution and error bounds are computed because
  274: *>                       there are a number of situations where the
  275: *>                       computed solution can be more accurate than the
  276: *>                       value of RCOND would suggest.
  277: *> \endverbatim
  278: *
  279: *  Authors:
  280: *  ========
  281: *
  282: *> \author Univ. of Tennessee 
  283: *> \author Univ. of California Berkeley 
  284: *> \author Univ. of Colorado Denver 
  285: *> \author NAG Ltd. 
  286: *
  287: *> \date November 2011
  288: *
  289: *> \ingroup doubleOTHERsolve
  290: *
  291: *> \par Further Details:
  292: *  =====================
  293: *>
  294: *> \verbatim
  295: *>
  296: *>  The packed storage scheme is illustrated by the following example
  297: *>  when N = 4, UPLO = 'U':
  298: *>
  299: *>  Two-dimensional storage of the symmetric matrix A:
  300: *>
  301: *>     a11 a12 a13 a14
  302: *>         a22 a23 a24
  303: *>             a33 a34     (aij = conjg(aji))
  304: *>                 a44
  305: *>
  306: *>  Packed storage of the upper triangle of A:
  307: *>
  308: *>  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
  309: *> \endverbatim
  310: *>
  311: *  =====================================================================
  312:       SUBROUTINE DPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB,
  313:      $                   X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO )
  314: *
  315: *  -- LAPACK driver routine (version 3.4.0) --
  316: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  317: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  318: *     November 2011
  319: *
  320: *     .. Scalar Arguments ..
  321:       CHARACTER          EQUED, FACT, UPLO
  322:       INTEGER            INFO, LDB, LDX, N, NRHS
  323:       DOUBLE PRECISION   RCOND
  324: *     ..
  325: *     .. Array Arguments ..
  326:       INTEGER            IWORK( * )
  327:       DOUBLE PRECISION   AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
  328:      $                   FERR( * ), S( * ), WORK( * ), X( LDX, * )
  329: *     ..
  330: *
  331: *  =====================================================================
  332: *
  333: *     .. Parameters ..
  334:       DOUBLE PRECISION   ZERO, ONE
  335:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  336: *     ..
  337: *     .. Local Scalars ..
  338:       LOGICAL            EQUIL, NOFACT, RCEQU
  339:       INTEGER            I, INFEQU, J
  340:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
  341: *     ..
  342: *     .. External Functions ..
  343:       LOGICAL            LSAME
  344:       DOUBLE PRECISION   DLAMCH, DLANSP
  345:       EXTERNAL           LSAME, DLAMCH, DLANSP
  346: *     ..
  347: *     .. External Subroutines ..
  348:       EXTERNAL           DCOPY, DLACPY, DLAQSP, DPPCON, DPPEQU, DPPRFS,
  349:      $                   DPPTRF, DPPTRS, XERBLA
  350: *     ..
  351: *     .. Intrinsic Functions ..
  352:       INTRINSIC          MAX, MIN
  353: *     ..
  354: *     .. Executable Statements ..
  355: *
  356:       INFO = 0
  357:       NOFACT = LSAME( FACT, 'N' )
  358:       EQUIL = LSAME( FACT, 'E' )
  359:       IF( NOFACT .OR. EQUIL ) THEN
  360:          EQUED = 'N'
  361:          RCEQU = .FALSE.
  362:       ELSE
  363:          RCEQU = LSAME( EQUED, 'Y' )
  364:          SMLNUM = DLAMCH( 'Safe minimum' )
  365:          BIGNUM = ONE / SMLNUM
  366:       END IF
  367: *
  368: *     Test the input parameters.
  369: *
  370:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  371:      $     THEN
  372:          INFO = -1
  373:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
  374:      $          THEN
  375:          INFO = -2
  376:       ELSE IF( N.LT.0 ) THEN
  377:          INFO = -3
  378:       ELSE IF( NRHS.LT.0 ) THEN
  379:          INFO = -4
  380:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  381:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  382:          INFO = -7
  383:       ELSE
  384:          IF( RCEQU ) THEN
  385:             SMIN = BIGNUM
  386:             SMAX = ZERO
  387:             DO 10 J = 1, N
  388:                SMIN = MIN( SMIN, S( J ) )
  389:                SMAX = MAX( SMAX, S( J ) )
  390:    10       CONTINUE
  391:             IF( SMIN.LE.ZERO ) THEN
  392:                INFO = -8
  393:             ELSE IF( N.GT.0 ) THEN
  394:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  395:             ELSE
  396:                SCOND = ONE
  397:             END IF
  398:          END IF
  399:          IF( INFO.EQ.0 ) THEN
  400:             IF( LDB.LT.MAX( 1, N ) ) THEN
  401:                INFO = -10
  402:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  403:                INFO = -12
  404:             END IF
  405:          END IF
  406:       END IF
  407: *
  408:       IF( INFO.NE.0 ) THEN
  409:          CALL XERBLA( 'DPPSVX', -INFO )
  410:          RETURN
  411:       END IF
  412: *
  413:       IF( EQUIL ) THEN
  414: *
  415: *        Compute row and column scalings to equilibrate the matrix A.
  416: *
  417:          CALL DPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFEQU )
  418:          IF( INFEQU.EQ.0 ) THEN
  419: *
  420: *           Equilibrate the matrix.
  421: *
  422:             CALL DLAQSP( UPLO, N, AP, S, SCOND, AMAX, EQUED )
  423:             RCEQU = LSAME( EQUED, 'Y' )
  424:          END IF
  425:       END IF
  426: *
  427: *     Scale the right-hand side.
  428: *
  429:       IF( RCEQU ) THEN
  430:          DO 30 J = 1, NRHS
  431:             DO 20 I = 1, N
  432:                B( I, J ) = S( I )*B( I, J )
  433:    20       CONTINUE
  434:    30    CONTINUE
  435:       END IF
  436: *
  437:       IF( NOFACT .OR. EQUIL ) THEN
  438: *
  439: *        Compute the Cholesky factorization A = U**T * U or A = L * L**T.
  440: *
  441:          CALL DCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 )
  442:          CALL DPPTRF( UPLO, N, AFP, INFO )
  443: *
  444: *        Return if INFO is non-zero.
  445: *
  446:          IF( INFO.GT.0 )THEN
  447:             RCOND = ZERO
  448:             RETURN
  449:          END IF
  450:       END IF
  451: *
  452: *     Compute the norm of the matrix A.
  453: *
  454:       ANORM = DLANSP( 'I', UPLO, N, AP, WORK )
  455: *
  456: *     Compute the reciprocal of the condition number of A.
  457: *
  458:       CALL DPPCON( UPLO, N, AFP, ANORM, RCOND, WORK, IWORK, INFO )
  459: *
  460: *     Compute the solution matrix X.
  461: *
  462:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  463:       CALL DPPTRS( UPLO, N, NRHS, AFP, X, LDX, INFO )
  464: *
  465: *     Use iterative refinement to improve the computed solution and
  466: *     compute error bounds and backward error estimates for it.
  467: *
  468:       CALL DPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR,
  469:      $             WORK, IWORK, INFO )
  470: *
  471: *     Transform the solution matrix X to a solution of the original
  472: *     system.
  473: *
  474:       IF( RCEQU ) THEN
  475:          DO 50 J = 1, NRHS
  476:             DO 40 I = 1, N
  477:                X( I, J ) = S( I )*X( I, J )
  478:    40       CONTINUE
  479:    50    CONTINUE
  480:          DO 60 J = 1, NRHS
  481:             FERR( J ) = FERR( J ) / SCOND
  482:    60    CONTINUE
  483:       END IF
  484: *
  485: *     Set INFO = N+1 if the matrix is singular to working precision.
  486: *
  487:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  488:      $   INFO = N + 1
  489: *
  490:       RETURN
  491: *
  492: *     End of DPPSVX
  493: *
  494:       END

CVSweb interface <joel.bertrand@systella.fr>