File:  [local] / rpl / lapack / lapack / dppsvx.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:10 2011 UTC (12 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE DPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB,
    2:      $                   X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.3.1) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *  -- April 2011                                                      --
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          EQUED, FACT, UPLO
   11:       INTEGER            INFO, LDB, LDX, N, NRHS
   12:       DOUBLE PRECISION   RCOND
   13: *     ..
   14: *     .. Array Arguments ..
   15:       INTEGER            IWORK( * )
   16:       DOUBLE PRECISION   AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
   17:      $                   FERR( * ), S( * ), WORK( * ), X( LDX, * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  DPPSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
   24: *  compute the solution to a real system of linear equations
   25: *     A * X = B,
   26: *  where A is an N-by-N symmetric positive definite matrix stored in
   27: *  packed format and X and B are N-by-NRHS matrices.
   28: *
   29: *  Error bounds on the solution and a condition estimate are also
   30: *  provided.
   31: *
   32: *  Description
   33: *  ===========
   34: *
   35: *  The following steps are performed:
   36: *
   37: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
   38: *     the system:
   39: *        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
   40: *     Whether or not the system will be equilibrated depends on the
   41: *     scaling of the matrix A, but if equilibration is used, A is
   42: *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
   43: *
   44: *  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
   45: *     factor the matrix A (after equilibration if FACT = 'E') as
   46: *        A = U**T* U,  if UPLO = 'U', or
   47: *        A = L * L**T,  if UPLO = 'L',
   48: *     where U is an upper triangular matrix and L is a lower triangular
   49: *     matrix.
   50: *
   51: *  3. If the leading i-by-i principal minor is not positive definite,
   52: *     then the routine returns with INFO = i. Otherwise, the factored
   53: *     form of A is used to estimate the condition number of the matrix
   54: *     A.  If the reciprocal of the condition number is less than machine
   55: *     precision, INFO = N+1 is returned as a warning, but the routine
   56: *     still goes on to solve for X and compute error bounds as
   57: *     described below.
   58: *
   59: *  4. The system of equations is solved for X using the factored form
   60: *     of A.
   61: *
   62: *  5. Iterative refinement is applied to improve the computed solution
   63: *     matrix and calculate error bounds and backward error estimates
   64: *     for it.
   65: *
   66: *  6. If equilibration was used, the matrix X is premultiplied by
   67: *     diag(S) so that it solves the original system before
   68: *     equilibration.
   69: *
   70: *  Arguments
   71: *  =========
   72: *
   73: *  FACT    (input) CHARACTER*1
   74: *          Specifies whether or not the factored form of the matrix A is
   75: *          supplied on entry, and if not, whether the matrix A should be
   76: *          equilibrated before it is factored.
   77: *          = 'F':  On entry, AFP contains the factored form of A.
   78: *                  If EQUED = 'Y', the matrix A has been equilibrated
   79: *                  with scaling factors given by S.  AP and AFP will not
   80: *                  be modified.
   81: *          = 'N':  The matrix A will be copied to AFP and factored.
   82: *          = 'E':  The matrix A will be equilibrated if necessary, then
   83: *                  copied to AFP and factored.
   84: *
   85: *  UPLO    (input) CHARACTER*1
   86: *          = 'U':  Upper triangle of A is stored;
   87: *          = 'L':  Lower triangle of A is stored.
   88: *
   89: *  N       (input) INTEGER
   90: *          The number of linear equations, i.e., the order of the
   91: *          matrix A.  N >= 0.
   92: *
   93: *  NRHS    (input) INTEGER
   94: *          The number of right hand sides, i.e., the number of columns
   95: *          of the matrices B and X.  NRHS >= 0.
   96: *
   97: *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
   98: *          On entry, the upper or lower triangle of the symmetric matrix
   99: *          A, packed columnwise in a linear array, except if FACT = 'F'
  100: *          and EQUED = 'Y', then A must contain the equilibrated matrix
  101: *          diag(S)*A*diag(S).  The j-th column of A is stored in the
  102: *          array AP as follows:
  103: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  104: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  105: *          See below for further details.  A is not modified if
  106: *          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
  107: *
  108: *          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  109: *          diag(S)*A*diag(S).
  110: *
  111: *  AFP     (input or output) DOUBLE PRECISION array, dimension
  112: *                            (N*(N+1)/2)
  113: *          If FACT = 'F', then AFP is an input argument and on entry
  114: *          contains the triangular factor U or L from the Cholesky
  115: *          factorization A = U**T*U or A = L*L**T, in the same storage
  116: *          format as A.  If EQUED .ne. 'N', then AFP is the factored
  117: *          form of the equilibrated matrix A.
  118: *
  119: *          If FACT = 'N', then AFP is an output argument and on exit
  120: *          returns the triangular factor U or L from the Cholesky
  121: *          factorization A = U**T * U or A = L * L**T of the original
  122: *          matrix A.
  123: *
  124: *          If FACT = 'E', then AFP is an output argument and on exit
  125: *          returns the triangular factor U or L from the Cholesky
  126: *          factorization A = U**T * U or A = L * L**T of the equilibrated
  127: *          matrix A (see the description of AP for the form of the
  128: *          equilibrated matrix).
  129: *
  130: *  EQUED   (input or output) CHARACTER*1
  131: *          Specifies the form of equilibration that was done.
  132: *          = 'N':  No equilibration (always true if FACT = 'N').
  133: *          = 'Y':  Equilibration was done, i.e., A has been replaced by
  134: *                  diag(S) * A * diag(S).
  135: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
  136: *          output argument.
  137: *
  138: *  S       (input or output) DOUBLE PRECISION array, dimension (N)
  139: *          The scale factors for A; not accessed if EQUED = 'N'.  S is
  140: *          an input argument if FACT = 'F'; otherwise, S is an output
  141: *          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
  142: *          must be positive.
  143: *
  144: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
  145: *          On entry, the N-by-NRHS right hand side matrix B.
  146: *          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
  147: *          B is overwritten by diag(S) * B.
  148: *
  149: *  LDB     (input) INTEGER
  150: *          The leading dimension of the array B.  LDB >= max(1,N).
  151: *
  152: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
  153: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
  154: *          the original system of equations.  Note that if EQUED = 'Y',
  155: *          A and B are modified on exit, and the solution to the
  156: *          equilibrated system is inv(diag(S))*X.
  157: *
  158: *  LDX     (input) INTEGER
  159: *          The leading dimension of the array X.  LDX >= max(1,N).
  160: *
  161: *  RCOND   (output) DOUBLE PRECISION
  162: *          The estimate of the reciprocal condition number of the matrix
  163: *          A after equilibration (if done).  If RCOND is less than the
  164: *          machine precision (in particular, if RCOND = 0), the matrix
  165: *          is singular to working precision.  This condition is
  166: *          indicated by a return code of INFO > 0.
  167: *
  168: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  169: *          The estimated forward error bound for each solution vector
  170: *          X(j) (the j-th column of the solution matrix X).
  171: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
  172: *          is an estimated upper bound for the magnitude of the largest
  173: *          element in (X(j) - XTRUE) divided by the magnitude of the
  174: *          largest element in X(j).  The estimate is as reliable as
  175: *          the estimate for RCOND, and is almost always a slight
  176: *          overestimate of the true error.
  177: *
  178: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  179: *          The componentwise relative backward error of each solution
  180: *          vector X(j) (i.e., the smallest relative change in
  181: *          any element of A or B that makes X(j) an exact solution).
  182: *
  183: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
  184: *
  185: *  IWORK   (workspace) INTEGER array, dimension (N)
  186: *
  187: *  INFO    (output) INTEGER
  188: *          = 0:  successful exit
  189: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  190: *          > 0:  if INFO = i, and i is
  191: *                <= N:  the leading minor of order i of A is
  192: *                       not positive definite, so the factorization
  193: *                       could not be completed, and the solution has not
  194: *                       been computed. RCOND = 0 is returned.
  195: *                = N+1: U is nonsingular, but RCOND is less than machine
  196: *                       precision, meaning that the matrix is singular
  197: *                       to working precision.  Nevertheless, the
  198: *                       solution and error bounds are computed because
  199: *                       there are a number of situations where the
  200: *                       computed solution can be more accurate than the
  201: *                       value of RCOND would suggest.
  202: *
  203: *  Further Details
  204: *  ===============
  205: *
  206: *  The packed storage scheme is illustrated by the following example
  207: *  when N = 4, UPLO = 'U':
  208: *
  209: *  Two-dimensional storage of the symmetric matrix A:
  210: *
  211: *     a11 a12 a13 a14
  212: *         a22 a23 a24
  213: *             a33 a34     (aij = conjg(aji))
  214: *                 a44
  215: *
  216: *  Packed storage of the upper triangle of A:
  217: *
  218: *  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
  219: *
  220: *  =====================================================================
  221: *
  222: *     .. Parameters ..
  223:       DOUBLE PRECISION   ZERO, ONE
  224:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  225: *     ..
  226: *     .. Local Scalars ..
  227:       LOGICAL            EQUIL, NOFACT, RCEQU
  228:       INTEGER            I, INFEQU, J
  229:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
  230: *     ..
  231: *     .. External Functions ..
  232:       LOGICAL            LSAME
  233:       DOUBLE PRECISION   DLAMCH, DLANSP
  234:       EXTERNAL           LSAME, DLAMCH, DLANSP
  235: *     ..
  236: *     .. External Subroutines ..
  237:       EXTERNAL           DCOPY, DLACPY, DLAQSP, DPPCON, DPPEQU, DPPRFS,
  238:      $                   DPPTRF, DPPTRS, XERBLA
  239: *     ..
  240: *     .. Intrinsic Functions ..
  241:       INTRINSIC          MAX, MIN
  242: *     ..
  243: *     .. Executable Statements ..
  244: *
  245:       INFO = 0
  246:       NOFACT = LSAME( FACT, 'N' )
  247:       EQUIL = LSAME( FACT, 'E' )
  248:       IF( NOFACT .OR. EQUIL ) THEN
  249:          EQUED = 'N'
  250:          RCEQU = .FALSE.
  251:       ELSE
  252:          RCEQU = LSAME( EQUED, 'Y' )
  253:          SMLNUM = DLAMCH( 'Safe minimum' )
  254:          BIGNUM = ONE / SMLNUM
  255:       END IF
  256: *
  257: *     Test the input parameters.
  258: *
  259:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  260:      $     THEN
  261:          INFO = -1
  262:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
  263:      $          THEN
  264:          INFO = -2
  265:       ELSE IF( N.LT.0 ) THEN
  266:          INFO = -3
  267:       ELSE IF( NRHS.LT.0 ) THEN
  268:          INFO = -4
  269:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  270:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  271:          INFO = -7
  272:       ELSE
  273:          IF( RCEQU ) THEN
  274:             SMIN = BIGNUM
  275:             SMAX = ZERO
  276:             DO 10 J = 1, N
  277:                SMIN = MIN( SMIN, S( J ) )
  278:                SMAX = MAX( SMAX, S( J ) )
  279:    10       CONTINUE
  280:             IF( SMIN.LE.ZERO ) THEN
  281:                INFO = -8
  282:             ELSE IF( N.GT.0 ) THEN
  283:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  284:             ELSE
  285:                SCOND = ONE
  286:             END IF
  287:          END IF
  288:          IF( INFO.EQ.0 ) THEN
  289:             IF( LDB.LT.MAX( 1, N ) ) THEN
  290:                INFO = -10
  291:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  292:                INFO = -12
  293:             END IF
  294:          END IF
  295:       END IF
  296: *
  297:       IF( INFO.NE.0 ) THEN
  298:          CALL XERBLA( 'DPPSVX', -INFO )
  299:          RETURN
  300:       END IF
  301: *
  302:       IF( EQUIL ) THEN
  303: *
  304: *        Compute row and column scalings to equilibrate the matrix A.
  305: *
  306:          CALL DPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFEQU )
  307:          IF( INFEQU.EQ.0 ) THEN
  308: *
  309: *           Equilibrate the matrix.
  310: *
  311:             CALL DLAQSP( UPLO, N, AP, S, SCOND, AMAX, EQUED )
  312:             RCEQU = LSAME( EQUED, 'Y' )
  313:          END IF
  314:       END IF
  315: *
  316: *     Scale the right-hand side.
  317: *
  318:       IF( RCEQU ) THEN
  319:          DO 30 J = 1, NRHS
  320:             DO 20 I = 1, N
  321:                B( I, J ) = S( I )*B( I, J )
  322:    20       CONTINUE
  323:    30    CONTINUE
  324:       END IF
  325: *
  326:       IF( NOFACT .OR. EQUIL ) THEN
  327: *
  328: *        Compute the Cholesky factorization A = U**T * U or A = L * L**T.
  329: *
  330:          CALL DCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 )
  331:          CALL DPPTRF( UPLO, N, AFP, INFO )
  332: *
  333: *        Return if INFO is non-zero.
  334: *
  335:          IF( INFO.GT.0 )THEN
  336:             RCOND = ZERO
  337:             RETURN
  338:          END IF
  339:       END IF
  340: *
  341: *     Compute the norm of the matrix A.
  342: *
  343:       ANORM = DLANSP( 'I', UPLO, N, AP, WORK )
  344: *
  345: *     Compute the reciprocal of the condition number of A.
  346: *
  347:       CALL DPPCON( UPLO, N, AFP, ANORM, RCOND, WORK, IWORK, INFO )
  348: *
  349: *     Compute the solution matrix X.
  350: *
  351:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  352:       CALL DPPTRS( UPLO, N, NRHS, AFP, X, LDX, INFO )
  353: *
  354: *     Use iterative refinement to improve the computed solution and
  355: *     compute error bounds and backward error estimates for it.
  356: *
  357:       CALL DPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR,
  358:      $             WORK, IWORK, INFO )
  359: *
  360: *     Transform the solution matrix X to a solution of the original
  361: *     system.
  362: *
  363:       IF( RCEQU ) THEN
  364:          DO 50 J = 1, NRHS
  365:             DO 40 I = 1, N
  366:                X( I, J ) = S( I )*X( I, J )
  367:    40       CONTINUE
  368:    50    CONTINUE
  369:          DO 60 J = 1, NRHS
  370:             FERR( J ) = FERR( J ) / SCOND
  371:    60    CONTINUE
  372:       END IF
  373: *
  374: *     Set INFO = N+1 if the matrix is singular to working precision.
  375: *
  376:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  377:      $   INFO = N + 1
  378: *
  379:       RETURN
  380: *
  381: *     End of DPPSVX
  382: *
  383:       END

CVSweb interface <joel.bertrand@systella.fr>