Annotation of rpl/lapack/lapack/dppsvx.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE DPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB,
                      2:      $                   X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          EQUED, FACT, UPLO
                     11:       INTEGER            INFO, LDB, LDX, N, NRHS
                     12:       DOUBLE PRECISION   RCOND
                     13: *     ..
                     14: *     .. Array Arguments ..
                     15:       INTEGER            IWORK( * )
                     16:       DOUBLE PRECISION   AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
                     17:      $                   FERR( * ), S( * ), WORK( * ), X( LDX, * )
                     18: *     ..
                     19: *
                     20: *  Purpose
                     21: *  =======
                     22: *
                     23: *  DPPSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
                     24: *  compute the solution to a real system of linear equations
                     25: *     A * X = B,
                     26: *  where A is an N-by-N symmetric positive definite matrix stored in
                     27: *  packed format and X and B are N-by-NRHS matrices.
                     28: *
                     29: *  Error bounds on the solution and a condition estimate are also
                     30: *  provided.
                     31: *
                     32: *  Description
                     33: *  ===========
                     34: *
                     35: *  The following steps are performed:
                     36: *
                     37: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
                     38: *     the system:
                     39: *        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
                     40: *     Whether or not the system will be equilibrated depends on the
                     41: *     scaling of the matrix A, but if equilibration is used, A is
                     42: *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
                     43: *
                     44: *  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
                     45: *     factor the matrix A (after equilibration if FACT = 'E') as
                     46: *        A = U**T* U,  if UPLO = 'U', or
                     47: *        A = L * L**T,  if UPLO = 'L',
                     48: *     where U is an upper triangular matrix and L is a lower triangular
                     49: *     matrix.
                     50: *
                     51: *  3. If the leading i-by-i principal minor is not positive definite,
                     52: *     then the routine returns with INFO = i. Otherwise, the factored
                     53: *     form of A is used to estimate the condition number of the matrix
                     54: *     A.  If the reciprocal of the condition number is less than machine
                     55: *     precision, INFO = N+1 is returned as a warning, but the routine
                     56: *     still goes on to solve for X and compute error bounds as
                     57: *     described below.
                     58: *
                     59: *  4. The system of equations is solved for X using the factored form
                     60: *     of A.
                     61: *
                     62: *  5. Iterative refinement is applied to improve the computed solution
                     63: *     matrix and calculate error bounds and backward error estimates
                     64: *     for it.
                     65: *
                     66: *  6. If equilibration was used, the matrix X is premultiplied by
                     67: *     diag(S) so that it solves the original system before
                     68: *     equilibration.
                     69: *
                     70: *  Arguments
                     71: *  =========
                     72: *
                     73: *  FACT    (input) CHARACTER*1
                     74: *          Specifies whether or not the factored form of the matrix A is
                     75: *          supplied on entry, and if not, whether the matrix A should be
                     76: *          equilibrated before it is factored.
                     77: *          = 'F':  On entry, AFP contains the factored form of A.
                     78: *                  If EQUED = 'Y', the matrix A has been equilibrated
                     79: *                  with scaling factors given by S.  AP and AFP will not
                     80: *                  be modified.
                     81: *          = 'N':  The matrix A will be copied to AFP and factored.
                     82: *          = 'E':  The matrix A will be equilibrated if necessary, then
                     83: *                  copied to AFP and factored.
                     84: *
                     85: *  UPLO    (input) CHARACTER*1
                     86: *          = 'U':  Upper triangle of A is stored;
                     87: *          = 'L':  Lower triangle of A is stored.
                     88: *
                     89: *  N       (input) INTEGER
                     90: *          The number of linear equations, i.e., the order of the
                     91: *          matrix A.  N >= 0.
                     92: *
                     93: *  NRHS    (input) INTEGER
                     94: *          The number of right hand sides, i.e., the number of columns
                     95: *          of the matrices B and X.  NRHS >= 0.
                     96: *
                     97: *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     98: *          On entry, the upper or lower triangle of the symmetric matrix
                     99: *          A, packed columnwise in a linear array, except if FACT = 'F'
                    100: *          and EQUED = 'Y', then A must contain the equilibrated matrix
                    101: *          diag(S)*A*diag(S).  The j-th column of A is stored in the
                    102: *          array AP as follows:
                    103: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                    104: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
                    105: *          See below for further details.  A is not modified if
                    106: *          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
                    107: *
                    108: *          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
                    109: *          diag(S)*A*diag(S).
                    110: *
                    111: *  AFP     (input or output) DOUBLE PRECISION array, dimension
                    112: *                            (N*(N+1)/2)
                    113: *          If FACT = 'F', then AFP is an input argument and on entry
                    114: *          contains the triangular factor U or L from the Cholesky
                    115: *          factorization A = U'*U or A = L*L', in the same storage
                    116: *          format as A.  If EQUED .ne. 'N', then AFP is the factored
                    117: *          form of the equilibrated matrix A.
                    118: *
                    119: *          If FACT = 'N', then AFP is an output argument and on exit
                    120: *          returns the triangular factor U or L from the Cholesky
                    121: *          factorization A = U'*U or A = L*L' of the original matrix A.
                    122: *
                    123: *          If FACT = 'E', then AFP is an output argument and on exit
                    124: *          returns the triangular factor U or L from the Cholesky
                    125: *          factorization A = U'*U or A = L*L' of the equilibrated
                    126: *          matrix A (see the description of AP for the form of the
                    127: *          equilibrated matrix).
                    128: *
                    129: *  EQUED   (input or output) CHARACTER*1
                    130: *          Specifies the form of equilibration that was done.
                    131: *          = 'N':  No equilibration (always true if FACT = 'N').
                    132: *          = 'Y':  Equilibration was done, i.e., A has been replaced by
                    133: *                  diag(S) * A * diag(S).
                    134: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
                    135: *          output argument.
                    136: *
                    137: *  S       (input or output) DOUBLE PRECISION array, dimension (N)
                    138: *          The scale factors for A; not accessed if EQUED = 'N'.  S is
                    139: *          an input argument if FACT = 'F'; otherwise, S is an output
                    140: *          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
                    141: *          must be positive.
                    142: *
                    143: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
                    144: *          On entry, the N-by-NRHS right hand side matrix B.
                    145: *          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
                    146: *          B is overwritten by diag(S) * B.
                    147: *
                    148: *  LDB     (input) INTEGER
                    149: *          The leading dimension of the array B.  LDB >= max(1,N).
                    150: *
                    151: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
                    152: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
                    153: *          the original system of equations.  Note that if EQUED = 'Y',
                    154: *          A and B are modified on exit, and the solution to the
                    155: *          equilibrated system is inv(diag(S))*X.
                    156: *
                    157: *  LDX     (input) INTEGER
                    158: *          The leading dimension of the array X.  LDX >= max(1,N).
                    159: *
                    160: *  RCOND   (output) DOUBLE PRECISION
                    161: *          The estimate of the reciprocal condition number of the matrix
                    162: *          A after equilibration (if done).  If RCOND is less than the
                    163: *          machine precision (in particular, if RCOND = 0), the matrix
                    164: *          is singular to working precision.  This condition is
                    165: *          indicated by a return code of INFO > 0.
                    166: *
                    167: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    168: *          The estimated forward error bound for each solution vector
                    169: *          X(j) (the j-th column of the solution matrix X).
                    170: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    171: *          is an estimated upper bound for the magnitude of the largest
                    172: *          element in (X(j) - XTRUE) divided by the magnitude of the
                    173: *          largest element in X(j).  The estimate is as reliable as
                    174: *          the estimate for RCOND, and is almost always a slight
                    175: *          overestimate of the true error.
                    176: *
                    177: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    178: *          The componentwise relative backward error of each solution
                    179: *          vector X(j) (i.e., the smallest relative change in
                    180: *          any element of A or B that makes X(j) an exact solution).
                    181: *
                    182: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
                    183: *
                    184: *  IWORK   (workspace) INTEGER array, dimension (N)
                    185: *
                    186: *  INFO    (output) INTEGER
                    187: *          = 0:  successful exit
                    188: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    189: *          > 0:  if INFO = i, and i is
                    190: *                <= N:  the leading minor of order i of A is
                    191: *                       not positive definite, so the factorization
                    192: *                       could not be completed, and the solution has not
                    193: *                       been computed. RCOND = 0 is returned.
                    194: *                = N+1: U is nonsingular, but RCOND is less than machine
                    195: *                       precision, meaning that the matrix is singular
                    196: *                       to working precision.  Nevertheless, the
                    197: *                       solution and error bounds are computed because
                    198: *                       there are a number of situations where the
                    199: *                       computed solution can be more accurate than the
                    200: *                       value of RCOND would suggest.
                    201: *
                    202: *  Further Details
                    203: *  ===============
                    204: *
                    205: *  The packed storage scheme is illustrated by the following example
                    206: *  when N = 4, UPLO = 'U':
                    207: *
                    208: *  Two-dimensional storage of the symmetric matrix A:
                    209: *
                    210: *     a11 a12 a13 a14
                    211: *         a22 a23 a24
                    212: *             a33 a34     (aij = conjg(aji))
                    213: *                 a44
                    214: *
                    215: *  Packed storage of the upper triangle of A:
                    216: *
                    217: *  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
                    218: *
                    219: *  =====================================================================
                    220: *
                    221: *     .. Parameters ..
                    222:       DOUBLE PRECISION   ZERO, ONE
                    223:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    224: *     ..
                    225: *     .. Local Scalars ..
                    226:       LOGICAL            EQUIL, NOFACT, RCEQU
                    227:       INTEGER            I, INFEQU, J
                    228:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
                    229: *     ..
                    230: *     .. External Functions ..
                    231:       LOGICAL            LSAME
                    232:       DOUBLE PRECISION   DLAMCH, DLANSP
                    233:       EXTERNAL           LSAME, DLAMCH, DLANSP
                    234: *     ..
                    235: *     .. External Subroutines ..
                    236:       EXTERNAL           DCOPY, DLACPY, DLAQSP, DPPCON, DPPEQU, DPPRFS,
                    237:      $                   DPPTRF, DPPTRS, XERBLA
                    238: *     ..
                    239: *     .. Intrinsic Functions ..
                    240:       INTRINSIC          MAX, MIN
                    241: *     ..
                    242: *     .. Executable Statements ..
                    243: *
                    244:       INFO = 0
                    245:       NOFACT = LSAME( FACT, 'N' )
                    246:       EQUIL = LSAME( FACT, 'E' )
                    247:       IF( NOFACT .OR. EQUIL ) THEN
                    248:          EQUED = 'N'
                    249:          RCEQU = .FALSE.
                    250:       ELSE
                    251:          RCEQU = LSAME( EQUED, 'Y' )
                    252:          SMLNUM = DLAMCH( 'Safe minimum' )
                    253:          BIGNUM = ONE / SMLNUM
                    254:       END IF
                    255: *
                    256: *     Test the input parameters.
                    257: *
                    258:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    259:      $     THEN
                    260:          INFO = -1
                    261:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
                    262:      $          THEN
                    263:          INFO = -2
                    264:       ELSE IF( N.LT.0 ) THEN
                    265:          INFO = -3
                    266:       ELSE IF( NRHS.LT.0 ) THEN
                    267:          INFO = -4
                    268:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    269:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    270:          INFO = -7
                    271:       ELSE
                    272:          IF( RCEQU ) THEN
                    273:             SMIN = BIGNUM
                    274:             SMAX = ZERO
                    275:             DO 10 J = 1, N
                    276:                SMIN = MIN( SMIN, S( J ) )
                    277:                SMAX = MAX( SMAX, S( J ) )
                    278:    10       CONTINUE
                    279:             IF( SMIN.LE.ZERO ) THEN
                    280:                INFO = -8
                    281:             ELSE IF( N.GT.0 ) THEN
                    282:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
                    283:             ELSE
                    284:                SCOND = ONE
                    285:             END IF
                    286:          END IF
                    287:          IF( INFO.EQ.0 ) THEN
                    288:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    289:                INFO = -10
                    290:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    291:                INFO = -12
                    292:             END IF
                    293:          END IF
                    294:       END IF
                    295: *
                    296:       IF( INFO.NE.0 ) THEN
                    297:          CALL XERBLA( 'DPPSVX', -INFO )
                    298:          RETURN
                    299:       END IF
                    300: *
                    301:       IF( EQUIL ) THEN
                    302: *
                    303: *        Compute row and column scalings to equilibrate the matrix A.
                    304: *
                    305:          CALL DPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFEQU )
                    306:          IF( INFEQU.EQ.0 ) THEN
                    307: *
                    308: *           Equilibrate the matrix.
                    309: *
                    310:             CALL DLAQSP( UPLO, N, AP, S, SCOND, AMAX, EQUED )
                    311:             RCEQU = LSAME( EQUED, 'Y' )
                    312:          END IF
                    313:       END IF
                    314: *
                    315: *     Scale the right-hand side.
                    316: *
                    317:       IF( RCEQU ) THEN
                    318:          DO 30 J = 1, NRHS
                    319:             DO 20 I = 1, N
                    320:                B( I, J ) = S( I )*B( I, J )
                    321:    20       CONTINUE
                    322:    30    CONTINUE
                    323:       END IF
                    324: *
                    325:       IF( NOFACT .OR. EQUIL ) THEN
                    326: *
                    327: *        Compute the Cholesky factorization A = U'*U or A = L*L'.
                    328: *
                    329:          CALL DCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 )
                    330:          CALL DPPTRF( UPLO, N, AFP, INFO )
                    331: *
                    332: *        Return if INFO is non-zero.
                    333: *
                    334:          IF( INFO.GT.0 )THEN
                    335:             RCOND = ZERO
                    336:             RETURN
                    337:          END IF
                    338:       END IF
                    339: *
                    340: *     Compute the norm of the matrix A.
                    341: *
                    342:       ANORM = DLANSP( 'I', UPLO, N, AP, WORK )
                    343: *
                    344: *     Compute the reciprocal of the condition number of A.
                    345: *
                    346:       CALL DPPCON( UPLO, N, AFP, ANORM, RCOND, WORK, IWORK, INFO )
                    347: *
                    348: *     Compute the solution matrix X.
                    349: *
                    350:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    351:       CALL DPPTRS( UPLO, N, NRHS, AFP, X, LDX, INFO )
                    352: *
                    353: *     Use iterative refinement to improve the computed solution and
                    354: *     compute error bounds and backward error estimates for it.
                    355: *
                    356:       CALL DPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR,
                    357:      $             WORK, IWORK, INFO )
                    358: *
                    359: *     Transform the solution matrix X to a solution of the original
                    360: *     system.
                    361: *
                    362:       IF( RCEQU ) THEN
                    363:          DO 50 J = 1, NRHS
                    364:             DO 40 I = 1, N
                    365:                X( I, J ) = S( I )*X( I, J )
                    366:    40       CONTINUE
                    367:    50    CONTINUE
                    368:          DO 60 J = 1, NRHS
                    369:             FERR( J ) = FERR( J ) / SCOND
                    370:    60    CONTINUE
                    371:       END IF
                    372: *
                    373: *     Set INFO = N+1 if the matrix is singular to working precision.
                    374: *
                    375:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    376:      $   INFO = N + 1
                    377: *
                    378:       RETURN
                    379: *
                    380: *     End of DPPSVX
                    381: *
                    382:       END

CVSweb interface <joel.bertrand@systella.fr>