Annotation of rpl/lapack/lapack/dppsvx.f, revision 1.20

1.9       bertrand    1: *> \brief <b> DPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DPPSVX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dppsvx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dppsvx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dppsvx.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB,
                     22: *                          X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO )
1.16      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          EQUED, FACT, UPLO
                     26: *       INTEGER            INFO, LDB, LDX, N, NRHS
                     27: *       DOUBLE PRECISION   RCOND
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       INTEGER            IWORK( * )
                     31: *       DOUBLE PRECISION   AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
                     32: *      $                   FERR( * ), S( * ), WORK( * ), X( LDX, * )
                     33: *       ..
1.16      bertrand   34: *
1.9       bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> DPPSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
                     42: *> compute the solution to a real system of linear equations
                     43: *>    A * X = B,
                     44: *> where A is an N-by-N symmetric positive definite matrix stored in
                     45: *> packed format and X and B are N-by-NRHS matrices.
                     46: *>
                     47: *> Error bounds on the solution and a condition estimate are also
                     48: *> provided.
                     49: *> \endverbatim
                     50: *
                     51: *> \par Description:
                     52: *  =================
                     53: *>
                     54: *> \verbatim
                     55: *>
                     56: *> The following steps are performed:
                     57: *>
                     58: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
                     59: *>    the system:
                     60: *>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
                     61: *>    Whether or not the system will be equilibrated depends on the
                     62: *>    scaling of the matrix A, but if equilibration is used, A is
                     63: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
                     64: *>
                     65: *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
                     66: *>    factor the matrix A (after equilibration if FACT = 'E') as
                     67: *>       A = U**T* U,  if UPLO = 'U', or
                     68: *>       A = L * L**T,  if UPLO = 'L',
                     69: *>    where U is an upper triangular matrix and L is a lower triangular
                     70: *>    matrix.
                     71: *>
                     72: *> 3. If the leading i-by-i principal minor is not positive definite,
                     73: *>    then the routine returns with INFO = i. Otherwise, the factored
                     74: *>    form of A is used to estimate the condition number of the matrix
                     75: *>    A.  If the reciprocal of the condition number is less than machine
                     76: *>    precision, INFO = N+1 is returned as a warning, but the routine
                     77: *>    still goes on to solve for X and compute error bounds as
                     78: *>    described below.
                     79: *>
                     80: *> 4. The system of equations is solved for X using the factored form
                     81: *>    of A.
                     82: *>
                     83: *> 5. Iterative refinement is applied to improve the computed solution
                     84: *>    matrix and calculate error bounds and backward error estimates
                     85: *>    for it.
                     86: *>
                     87: *> 6. If equilibration was used, the matrix X is premultiplied by
                     88: *>    diag(S) so that it solves the original system before
                     89: *>    equilibration.
                     90: *> \endverbatim
                     91: *
                     92: *  Arguments:
                     93: *  ==========
                     94: *
                     95: *> \param[in] FACT
                     96: *> \verbatim
                     97: *>          FACT is CHARACTER*1
                     98: *>          Specifies whether or not the factored form of the matrix A is
                     99: *>          supplied on entry, and if not, whether the matrix A should be
                    100: *>          equilibrated before it is factored.
                    101: *>          = 'F':  On entry, AFP contains the factored form of A.
                    102: *>                  If EQUED = 'Y', the matrix A has been equilibrated
                    103: *>                  with scaling factors given by S.  AP and AFP will not
                    104: *>                  be modified.
                    105: *>          = 'N':  The matrix A will be copied to AFP and factored.
                    106: *>          = 'E':  The matrix A will be equilibrated if necessary, then
                    107: *>                  copied to AFP and factored.
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[in] UPLO
                    111: *> \verbatim
                    112: *>          UPLO is CHARACTER*1
                    113: *>          = 'U':  Upper triangle of A is stored;
                    114: *>          = 'L':  Lower triangle of A is stored.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] N
                    118: *> \verbatim
                    119: *>          N is INTEGER
                    120: *>          The number of linear equations, i.e., the order of the
                    121: *>          matrix A.  N >= 0.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] NRHS
                    125: *> \verbatim
                    126: *>          NRHS is INTEGER
                    127: *>          The number of right hand sides, i.e., the number of columns
                    128: *>          of the matrices B and X.  NRHS >= 0.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[in,out] AP
                    132: *> \verbatim
                    133: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
                    134: *>          On entry, the upper or lower triangle of the symmetric matrix
                    135: *>          A, packed columnwise in a linear array, except if FACT = 'F'
                    136: *>          and EQUED = 'Y', then A must contain the equilibrated matrix
                    137: *>          diag(S)*A*diag(S).  The j-th column of A is stored in the
                    138: *>          array AP as follows:
                    139: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                    140: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
                    141: *>          See below for further details.  A is not modified if
                    142: *>          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
                    143: *>
                    144: *>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
                    145: *>          diag(S)*A*diag(S).
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[in,out] AFP
                    149: *> \verbatim
1.18      bertrand  150: *>          AFP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
1.9       bertrand  151: *>          If FACT = 'F', then AFP is an input argument and on entry
                    152: *>          contains the triangular factor U or L from the Cholesky
                    153: *>          factorization A = U**T*U or A = L*L**T, in the same storage
                    154: *>          format as A.  If EQUED .ne. 'N', then AFP is the factored
                    155: *>          form of the equilibrated matrix A.
                    156: *>
                    157: *>          If FACT = 'N', then AFP is an output argument and on exit
                    158: *>          returns the triangular factor U or L from the Cholesky
                    159: *>          factorization A = U**T * U or A = L * L**T of the original
                    160: *>          matrix A.
                    161: *>
                    162: *>          If FACT = 'E', then AFP is an output argument and on exit
                    163: *>          returns the triangular factor U or L from the Cholesky
                    164: *>          factorization A = U**T * U or A = L * L**T of the equilibrated
                    165: *>          matrix A (see the description of AP for the form of the
                    166: *>          equilibrated matrix).
                    167: *> \endverbatim
                    168: *>
                    169: *> \param[in,out] EQUED
                    170: *> \verbatim
1.11      bertrand  171: *>          EQUED is CHARACTER*1
1.9       bertrand  172: *>          Specifies the form of equilibration that was done.
                    173: *>          = 'N':  No equilibration (always true if FACT = 'N').
                    174: *>          = 'Y':  Equilibration was done, i.e., A has been replaced by
                    175: *>                  diag(S) * A * diag(S).
                    176: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
                    177: *>          output argument.
                    178: *> \endverbatim
                    179: *>
                    180: *> \param[in,out] S
                    181: *> \verbatim
1.11      bertrand  182: *>          S is DOUBLE PRECISION array, dimension (N)
1.9       bertrand  183: *>          The scale factors for A; not accessed if EQUED = 'N'.  S is
                    184: *>          an input argument if FACT = 'F'; otherwise, S is an output
                    185: *>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
                    186: *>          must be positive.
                    187: *> \endverbatim
                    188: *>
                    189: *> \param[in,out] B
                    190: *> \verbatim
                    191: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    192: *>          On entry, the N-by-NRHS right hand side matrix B.
                    193: *>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
                    194: *>          B is overwritten by diag(S) * B.
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[in] LDB
                    198: *> \verbatim
                    199: *>          LDB is INTEGER
                    200: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    201: *> \endverbatim
                    202: *>
                    203: *> \param[out] X
                    204: *> \verbatim
                    205: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    206: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
                    207: *>          the original system of equations.  Note that if EQUED = 'Y',
                    208: *>          A and B are modified on exit, and the solution to the
                    209: *>          equilibrated system is inv(diag(S))*X.
                    210: *> \endverbatim
                    211: *>
                    212: *> \param[in] LDX
                    213: *> \verbatim
                    214: *>          LDX is INTEGER
                    215: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    216: *> \endverbatim
                    217: *>
                    218: *> \param[out] RCOND
                    219: *> \verbatim
                    220: *>          RCOND is DOUBLE PRECISION
                    221: *>          The estimate of the reciprocal condition number of the matrix
                    222: *>          A after equilibration (if done).  If RCOND is less than the
                    223: *>          machine precision (in particular, if RCOND = 0), the matrix
                    224: *>          is singular to working precision.  This condition is
                    225: *>          indicated by a return code of INFO > 0.
                    226: *> \endverbatim
                    227: *>
                    228: *> \param[out] FERR
                    229: *> \verbatim
                    230: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    231: *>          The estimated forward error bound for each solution vector
                    232: *>          X(j) (the j-th column of the solution matrix X).
                    233: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    234: *>          is an estimated upper bound for the magnitude of the largest
                    235: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    236: *>          largest element in X(j).  The estimate is as reliable as
                    237: *>          the estimate for RCOND, and is almost always a slight
                    238: *>          overestimate of the true error.
                    239: *> \endverbatim
                    240: *>
                    241: *> \param[out] BERR
                    242: *> \verbatim
                    243: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    244: *>          The componentwise relative backward error of each solution
                    245: *>          vector X(j) (i.e., the smallest relative change in
                    246: *>          any element of A or B that makes X(j) an exact solution).
                    247: *> \endverbatim
                    248: *>
                    249: *> \param[out] WORK
                    250: *> \verbatim
                    251: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
                    252: *> \endverbatim
                    253: *>
                    254: *> \param[out] IWORK
                    255: *> \verbatim
                    256: *>          IWORK is INTEGER array, dimension (N)
                    257: *> \endverbatim
                    258: *>
                    259: *> \param[out] INFO
                    260: *> \verbatim
                    261: *>          INFO is INTEGER
                    262: *>          = 0:  successful exit
                    263: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    264: *>          > 0:  if INFO = i, and i is
                    265: *>                <= N:  the leading minor of order i of A is
                    266: *>                       not positive definite, so the factorization
                    267: *>                       could not be completed, and the solution has not
                    268: *>                       been computed. RCOND = 0 is returned.
                    269: *>                = N+1: U is nonsingular, but RCOND is less than machine
                    270: *>                       precision, meaning that the matrix is singular
                    271: *>                       to working precision.  Nevertheless, the
                    272: *>                       solution and error bounds are computed because
                    273: *>                       there are a number of situations where the
                    274: *>                       computed solution can be more accurate than the
                    275: *>                       value of RCOND would suggest.
                    276: *> \endverbatim
                    277: *
                    278: *  Authors:
                    279: *  ========
                    280: *
1.16      bertrand  281: *> \author Univ. of Tennessee
                    282: *> \author Univ. of California Berkeley
                    283: *> \author Univ. of Colorado Denver
                    284: *> \author NAG Ltd.
1.9       bertrand  285: *
                    286: *> \ingroup doubleOTHERsolve
                    287: *
                    288: *> \par Further Details:
                    289: *  =====================
                    290: *>
                    291: *> \verbatim
                    292: *>
                    293: *>  The packed storage scheme is illustrated by the following example
                    294: *>  when N = 4, UPLO = 'U':
                    295: *>
                    296: *>  Two-dimensional storage of the symmetric matrix A:
                    297: *>
                    298: *>     a11 a12 a13 a14
                    299: *>         a22 a23 a24
                    300: *>             a33 a34     (aij = conjg(aji))
                    301: *>                 a44
                    302: *>
                    303: *>  Packed storage of the upper triangle of A:
                    304: *>
                    305: *>  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
                    306: *> \endverbatim
                    307: *>
                    308: *  =====================================================================
1.1       bertrand  309:       SUBROUTINE DPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB,
                    310:      $                   X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO )
                    311: *
1.20    ! bertrand  312: *  -- LAPACK driver routine --
1.1       bertrand  313: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    314: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    315: *
                    316: *     .. Scalar Arguments ..
                    317:       CHARACTER          EQUED, FACT, UPLO
                    318:       INTEGER            INFO, LDB, LDX, N, NRHS
                    319:       DOUBLE PRECISION   RCOND
                    320: *     ..
                    321: *     .. Array Arguments ..
                    322:       INTEGER            IWORK( * )
                    323:       DOUBLE PRECISION   AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
                    324:      $                   FERR( * ), S( * ), WORK( * ), X( LDX, * )
                    325: *     ..
                    326: *
                    327: *  =====================================================================
                    328: *
                    329: *     .. Parameters ..
                    330:       DOUBLE PRECISION   ZERO, ONE
                    331:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    332: *     ..
                    333: *     .. Local Scalars ..
                    334:       LOGICAL            EQUIL, NOFACT, RCEQU
                    335:       INTEGER            I, INFEQU, J
                    336:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
                    337: *     ..
                    338: *     .. External Functions ..
                    339:       LOGICAL            LSAME
                    340:       DOUBLE PRECISION   DLAMCH, DLANSP
                    341:       EXTERNAL           LSAME, DLAMCH, DLANSP
                    342: *     ..
                    343: *     .. External Subroutines ..
                    344:       EXTERNAL           DCOPY, DLACPY, DLAQSP, DPPCON, DPPEQU, DPPRFS,
                    345:      $                   DPPTRF, DPPTRS, XERBLA
                    346: *     ..
                    347: *     .. Intrinsic Functions ..
                    348:       INTRINSIC          MAX, MIN
                    349: *     ..
                    350: *     .. Executable Statements ..
                    351: *
                    352:       INFO = 0
                    353:       NOFACT = LSAME( FACT, 'N' )
                    354:       EQUIL = LSAME( FACT, 'E' )
                    355:       IF( NOFACT .OR. EQUIL ) THEN
                    356:          EQUED = 'N'
                    357:          RCEQU = .FALSE.
                    358:       ELSE
                    359:          RCEQU = LSAME( EQUED, 'Y' )
                    360:          SMLNUM = DLAMCH( 'Safe minimum' )
                    361:          BIGNUM = ONE / SMLNUM
                    362:       END IF
                    363: *
                    364: *     Test the input parameters.
                    365: *
                    366:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    367:      $     THEN
                    368:          INFO = -1
                    369:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
                    370:      $          THEN
                    371:          INFO = -2
                    372:       ELSE IF( N.LT.0 ) THEN
                    373:          INFO = -3
                    374:       ELSE IF( NRHS.LT.0 ) THEN
                    375:          INFO = -4
                    376:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    377:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    378:          INFO = -7
                    379:       ELSE
                    380:          IF( RCEQU ) THEN
                    381:             SMIN = BIGNUM
                    382:             SMAX = ZERO
                    383:             DO 10 J = 1, N
                    384:                SMIN = MIN( SMIN, S( J ) )
                    385:                SMAX = MAX( SMAX, S( J ) )
                    386:    10       CONTINUE
                    387:             IF( SMIN.LE.ZERO ) THEN
                    388:                INFO = -8
                    389:             ELSE IF( N.GT.0 ) THEN
                    390:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
                    391:             ELSE
                    392:                SCOND = ONE
                    393:             END IF
                    394:          END IF
                    395:          IF( INFO.EQ.0 ) THEN
                    396:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    397:                INFO = -10
                    398:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    399:                INFO = -12
                    400:             END IF
                    401:          END IF
                    402:       END IF
                    403: *
                    404:       IF( INFO.NE.0 ) THEN
                    405:          CALL XERBLA( 'DPPSVX', -INFO )
                    406:          RETURN
                    407:       END IF
                    408: *
                    409:       IF( EQUIL ) THEN
                    410: *
                    411: *        Compute row and column scalings to equilibrate the matrix A.
                    412: *
                    413:          CALL DPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFEQU )
                    414:          IF( INFEQU.EQ.0 ) THEN
                    415: *
                    416: *           Equilibrate the matrix.
                    417: *
                    418:             CALL DLAQSP( UPLO, N, AP, S, SCOND, AMAX, EQUED )
                    419:             RCEQU = LSAME( EQUED, 'Y' )
                    420:          END IF
                    421:       END IF
                    422: *
                    423: *     Scale the right-hand side.
                    424: *
                    425:       IF( RCEQU ) THEN
                    426:          DO 30 J = 1, NRHS
                    427:             DO 20 I = 1, N
                    428:                B( I, J ) = S( I )*B( I, J )
                    429:    20       CONTINUE
                    430:    30    CONTINUE
                    431:       END IF
                    432: *
                    433:       IF( NOFACT .OR. EQUIL ) THEN
                    434: *
1.8       bertrand  435: *        Compute the Cholesky factorization A = U**T * U or A = L * L**T.
1.1       bertrand  436: *
                    437:          CALL DCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 )
                    438:          CALL DPPTRF( UPLO, N, AFP, INFO )
                    439: *
                    440: *        Return if INFO is non-zero.
                    441: *
                    442:          IF( INFO.GT.0 )THEN
                    443:             RCOND = ZERO
                    444:             RETURN
                    445:          END IF
                    446:       END IF
                    447: *
                    448: *     Compute the norm of the matrix A.
                    449: *
                    450:       ANORM = DLANSP( 'I', UPLO, N, AP, WORK )
                    451: *
                    452: *     Compute the reciprocal of the condition number of A.
                    453: *
                    454:       CALL DPPCON( UPLO, N, AFP, ANORM, RCOND, WORK, IWORK, INFO )
                    455: *
                    456: *     Compute the solution matrix X.
                    457: *
                    458:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    459:       CALL DPPTRS( UPLO, N, NRHS, AFP, X, LDX, INFO )
                    460: *
                    461: *     Use iterative refinement to improve the computed solution and
                    462: *     compute error bounds and backward error estimates for it.
                    463: *
                    464:       CALL DPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR,
                    465:      $             WORK, IWORK, INFO )
                    466: *
                    467: *     Transform the solution matrix X to a solution of the original
                    468: *     system.
                    469: *
                    470:       IF( RCEQU ) THEN
                    471:          DO 50 J = 1, NRHS
                    472:             DO 40 I = 1, N
                    473:                X( I, J ) = S( I )*X( I, J )
                    474:    40       CONTINUE
                    475:    50    CONTINUE
                    476:          DO 60 J = 1, NRHS
                    477:             FERR( J ) = FERR( J ) / SCOND
                    478:    60    CONTINUE
                    479:       END IF
                    480: *
                    481: *     Set INFO = N+1 if the matrix is singular to working precision.
                    482: *
                    483:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    484:      $   INFO = N + 1
                    485: *
                    486:       RETURN
                    487: *
                    488: *     End of DPPSVX
                    489: *
                    490:       END

CVSweb interface <joel.bertrand@systella.fr>