File:  [local] / rpl / lapack / lapack / dpprfs.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:04 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DPPRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DPPRFS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpprfs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpprfs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpprfs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR,
   22: *                          BERR, WORK, IWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IWORK( * )
   30: *       DOUBLE PRECISION   AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
   31: *      $                   FERR( * ), WORK( * ), X( LDX, * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> DPPRFS improves the computed solution to a system of linear
   41: *> equations when the coefficient matrix is symmetric positive definite
   42: *> and packed, and provides error bounds and backward error estimates
   43: *> for the solution.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] UPLO
   50: *> \verbatim
   51: *>          UPLO is CHARACTER*1
   52: *>          = 'U':  Upper triangle of A is stored;
   53: *>          = 'L':  Lower triangle of A is stored.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The order of the matrix A.  N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] NRHS
   63: *> \verbatim
   64: *>          NRHS is INTEGER
   65: *>          The number of right hand sides, i.e., the number of columns
   66: *>          of the matrices B and X.  NRHS >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] AP
   70: *> \verbatim
   71: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
   72: *>          The upper or lower triangle of the symmetric matrix A, packed
   73: *>          columnwise in a linear array.  The j-th column of A is stored
   74: *>          in the array AP as follows:
   75: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   76: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] AFP
   80: *> \verbatim
   81: *>          AFP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
   82: *>          The triangular factor U or L from the Cholesky factorization
   83: *>          A = U**T*U or A = L*L**T, as computed by DPPTRF/ZPPTRF,
   84: *>          packed columnwise in a linear array in the same format as A
   85: *>          (see AP).
   86: *> \endverbatim
   87: *>
   88: *> \param[in] B
   89: *> \verbatim
   90: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
   91: *>          The right hand side matrix B.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] LDB
   95: *> \verbatim
   96: *>          LDB is INTEGER
   97: *>          The leading dimension of the array B.  LDB >= max(1,N).
   98: *> \endverbatim
   99: *>
  100: *> \param[in,out] X
  101: *> \verbatim
  102: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  103: *>          On entry, the solution matrix X, as computed by DPPTRS.
  104: *>          On exit, the improved solution matrix X.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] LDX
  108: *> \verbatim
  109: *>          LDX is INTEGER
  110: *>          The leading dimension of the array X.  LDX >= max(1,N).
  111: *> \endverbatim
  112: *>
  113: *> \param[out] FERR
  114: *> \verbatim
  115: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  116: *>          The estimated forward error bound for each solution vector
  117: *>          X(j) (the j-th column of the solution matrix X).
  118: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  119: *>          is an estimated upper bound for the magnitude of the largest
  120: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  121: *>          largest element in X(j).  The estimate is as reliable as
  122: *>          the estimate for RCOND, and is almost always a slight
  123: *>          overestimate of the true error.
  124: *> \endverbatim
  125: *>
  126: *> \param[out] BERR
  127: *> \verbatim
  128: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  129: *>          The componentwise relative backward error of each solution
  130: *>          vector X(j) (i.e., the smallest relative change in
  131: *>          any element of A or B that makes X(j) an exact solution).
  132: *> \endverbatim
  133: *>
  134: *> \param[out] WORK
  135: *> \verbatim
  136: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
  137: *> \endverbatim
  138: *>
  139: *> \param[out] IWORK
  140: *> \verbatim
  141: *>          IWORK is INTEGER array, dimension (N)
  142: *> \endverbatim
  143: *>
  144: *> \param[out] INFO
  145: *> \verbatim
  146: *>          INFO is INTEGER
  147: *>          = 0:  successful exit
  148: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  149: *> \endverbatim
  150: *
  151: *> \par Internal Parameters:
  152: *  =========================
  153: *>
  154: *> \verbatim
  155: *>  ITMAX is the maximum number of steps of iterative refinement.
  156: *> \endverbatim
  157: *
  158: *  Authors:
  159: *  ========
  160: *
  161: *> \author Univ. of Tennessee
  162: *> \author Univ. of California Berkeley
  163: *> \author Univ. of Colorado Denver
  164: *> \author NAG Ltd.
  165: *
  166: *> \ingroup doubleOTHERcomputational
  167: *
  168: *  =====================================================================
  169:       SUBROUTINE DPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR,
  170:      $                   BERR, WORK, IWORK, INFO )
  171: *
  172: *  -- LAPACK computational routine --
  173: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  174: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  175: *
  176: *     .. Scalar Arguments ..
  177:       CHARACTER          UPLO
  178:       INTEGER            INFO, LDB, LDX, N, NRHS
  179: *     ..
  180: *     .. Array Arguments ..
  181:       INTEGER            IWORK( * )
  182:       DOUBLE PRECISION   AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
  183:      $                   FERR( * ), WORK( * ), X( LDX, * )
  184: *     ..
  185: *
  186: *  =====================================================================
  187: *
  188: *     .. Parameters ..
  189:       INTEGER            ITMAX
  190:       PARAMETER          ( ITMAX = 5 )
  191:       DOUBLE PRECISION   ZERO
  192:       PARAMETER          ( ZERO = 0.0D+0 )
  193:       DOUBLE PRECISION   ONE
  194:       PARAMETER          ( ONE = 1.0D+0 )
  195:       DOUBLE PRECISION   TWO
  196:       PARAMETER          ( TWO = 2.0D+0 )
  197:       DOUBLE PRECISION   THREE
  198:       PARAMETER          ( THREE = 3.0D+0 )
  199: *     ..
  200: *     .. Local Scalars ..
  201:       LOGICAL            UPPER
  202:       INTEGER            COUNT, I, IK, J, K, KASE, KK, NZ
  203:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  204: *     ..
  205: *     .. Local Arrays ..
  206:       INTEGER            ISAVE( 3 )
  207: *     ..
  208: *     .. External Subroutines ..
  209:       EXTERNAL           DAXPY, DCOPY, DLACN2, DPPTRS, DSPMV, XERBLA
  210: *     ..
  211: *     .. Intrinsic Functions ..
  212:       INTRINSIC          ABS, MAX
  213: *     ..
  214: *     .. External Functions ..
  215:       LOGICAL            LSAME
  216:       DOUBLE PRECISION   DLAMCH
  217:       EXTERNAL           LSAME, DLAMCH
  218: *     ..
  219: *     .. Executable Statements ..
  220: *
  221: *     Test the input parameters.
  222: *
  223:       INFO = 0
  224:       UPPER = LSAME( UPLO, 'U' )
  225:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  226:          INFO = -1
  227:       ELSE IF( N.LT.0 ) THEN
  228:          INFO = -2
  229:       ELSE IF( NRHS.LT.0 ) THEN
  230:          INFO = -3
  231:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  232:          INFO = -7
  233:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  234:          INFO = -9
  235:       END IF
  236:       IF( INFO.NE.0 ) THEN
  237:          CALL XERBLA( 'DPPRFS', -INFO )
  238:          RETURN
  239:       END IF
  240: *
  241: *     Quick return if possible
  242: *
  243:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  244:          DO 10 J = 1, NRHS
  245:             FERR( J ) = ZERO
  246:             BERR( J ) = ZERO
  247:    10    CONTINUE
  248:          RETURN
  249:       END IF
  250: *
  251: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  252: *
  253:       NZ = N + 1
  254:       EPS = DLAMCH( 'Epsilon' )
  255:       SAFMIN = DLAMCH( 'Safe minimum' )
  256:       SAFE1 = NZ*SAFMIN
  257:       SAFE2 = SAFE1 / EPS
  258: *
  259: *     Do for each right hand side
  260: *
  261:       DO 140 J = 1, NRHS
  262: *
  263:          COUNT = 1
  264:          LSTRES = THREE
  265:    20    CONTINUE
  266: *
  267: *        Loop until stopping criterion is satisfied.
  268: *
  269: *        Compute residual R = B - A * X
  270: *
  271:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  272:          CALL DSPMV( UPLO, N, -ONE, AP, X( 1, J ), 1, ONE, WORK( N+1 ),
  273:      $               1 )
  274: *
  275: *        Compute componentwise relative backward error from formula
  276: *
  277: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  278: *
  279: *        where abs(Z) is the componentwise absolute value of the matrix
  280: *        or vector Z.  If the i-th component of the denominator is less
  281: *        than SAFE2, then SAFE1 is added to the i-th components of the
  282: *        numerator and denominator before dividing.
  283: *
  284:          DO 30 I = 1, N
  285:             WORK( I ) = ABS( B( I, J ) )
  286:    30    CONTINUE
  287: *
  288: *        Compute abs(A)*abs(X) + abs(B).
  289: *
  290:          KK = 1
  291:          IF( UPPER ) THEN
  292:             DO 50 K = 1, N
  293:                S = ZERO
  294:                XK = ABS( X( K, J ) )
  295:                IK = KK
  296:                DO 40 I = 1, K - 1
  297:                   WORK( I ) = WORK( I ) + ABS( AP( IK ) )*XK
  298:                   S = S + ABS( AP( IK ) )*ABS( X( I, J ) )
  299:                   IK = IK + 1
  300:    40          CONTINUE
  301:                WORK( K ) = WORK( K ) + ABS( AP( KK+K-1 ) )*XK + S
  302:                KK = KK + K
  303:    50       CONTINUE
  304:          ELSE
  305:             DO 70 K = 1, N
  306:                S = ZERO
  307:                XK = ABS( X( K, J ) )
  308:                WORK( K ) = WORK( K ) + ABS( AP( KK ) )*XK
  309:                IK = KK + 1
  310:                DO 60 I = K + 1, N
  311:                   WORK( I ) = WORK( I ) + ABS( AP( IK ) )*XK
  312:                   S = S + ABS( AP( IK ) )*ABS( X( I, J ) )
  313:                   IK = IK + 1
  314:    60          CONTINUE
  315:                WORK( K ) = WORK( K ) + S
  316:                KK = KK + ( N-K+1 )
  317:    70       CONTINUE
  318:          END IF
  319:          S = ZERO
  320:          DO 80 I = 1, N
  321:             IF( WORK( I ).GT.SAFE2 ) THEN
  322:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  323:             ELSE
  324:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  325:      $             ( WORK( I )+SAFE1 ) )
  326:             END IF
  327:    80    CONTINUE
  328:          BERR( J ) = S
  329: *
  330: *        Test stopping criterion. Continue iterating if
  331: *           1) The residual BERR(J) is larger than machine epsilon, and
  332: *           2) BERR(J) decreased by at least a factor of 2 during the
  333: *              last iteration, and
  334: *           3) At most ITMAX iterations tried.
  335: *
  336:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  337:      $       COUNT.LE.ITMAX ) THEN
  338: *
  339: *           Update solution and try again.
  340: *
  341:             CALL DPPTRS( UPLO, N, 1, AFP, WORK( N+1 ), N, INFO )
  342:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  343:             LSTRES = BERR( J )
  344:             COUNT = COUNT + 1
  345:             GO TO 20
  346:          END IF
  347: *
  348: *        Bound error from formula
  349: *
  350: *        norm(X - XTRUE) / norm(X) .le. FERR =
  351: *        norm( abs(inv(A))*
  352: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  353: *
  354: *        where
  355: *          norm(Z) is the magnitude of the largest component of Z
  356: *          inv(A) is the inverse of A
  357: *          abs(Z) is the componentwise absolute value of the matrix or
  358: *             vector Z
  359: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  360: *          EPS is machine epsilon
  361: *
  362: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  363: *        is incremented by SAFE1 if the i-th component of
  364: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  365: *
  366: *        Use DLACN2 to estimate the infinity-norm of the matrix
  367: *           inv(A) * diag(W),
  368: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  369: *
  370:          DO 90 I = 1, N
  371:             IF( WORK( I ).GT.SAFE2 ) THEN
  372:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  373:             ELSE
  374:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  375:             END IF
  376:    90    CONTINUE
  377: *
  378:          KASE = 0
  379:   100    CONTINUE
  380:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  381:      $                KASE, ISAVE )
  382:          IF( KASE.NE.0 ) THEN
  383:             IF( KASE.EQ.1 ) THEN
  384: *
  385: *              Multiply by diag(W)*inv(A**T).
  386: *
  387:                CALL DPPTRS( UPLO, N, 1, AFP, WORK( N+1 ), N, INFO )
  388:                DO 110 I = 1, N
  389:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  390:   110          CONTINUE
  391:             ELSE IF( KASE.EQ.2 ) THEN
  392: *
  393: *              Multiply by inv(A)*diag(W).
  394: *
  395:                DO 120 I = 1, N
  396:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  397:   120          CONTINUE
  398:                CALL DPPTRS( UPLO, N, 1, AFP, WORK( N+1 ), N, INFO )
  399:             END IF
  400:             GO TO 100
  401:          END IF
  402: *
  403: *        Normalize error.
  404: *
  405:          LSTRES = ZERO
  406:          DO 130 I = 1, N
  407:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  408:   130    CONTINUE
  409:          IF( LSTRES.NE.ZERO )
  410:      $      FERR( J ) = FERR( J ) / LSTRES
  411: *
  412:   140 CONTINUE
  413: *
  414:       RETURN
  415: *
  416: *     End of DPPRFS
  417: *
  418:       END

CVSweb interface <joel.bertrand@systella.fr>