File:  [local] / rpl / lapack / lapack / dpprfs.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE DPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR,
    2:      $                   BERR, WORK, IWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          UPLO
   13:       INTEGER            INFO, LDB, LDX, N, NRHS
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IWORK( * )
   17:       DOUBLE PRECISION   AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
   18:      $                   FERR( * ), WORK( * ), X( LDX, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  DPPRFS improves the computed solution to a system of linear
   25: *  equations when the coefficient matrix is symmetric positive definite
   26: *  and packed, and provides error bounds and backward error estimates
   27: *  for the solution.
   28: *
   29: *  Arguments
   30: *  =========
   31: *
   32: *  UPLO    (input) CHARACTER*1
   33: *          = 'U':  Upper triangle of A is stored;
   34: *          = 'L':  Lower triangle of A is stored.
   35: *
   36: *  N       (input) INTEGER
   37: *          The order of the matrix A.  N >= 0.
   38: *
   39: *  NRHS    (input) INTEGER
   40: *          The number of right hand sides, i.e., the number of columns
   41: *          of the matrices B and X.  NRHS >= 0.
   42: *
   43: *  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
   44: *          The upper or lower triangle of the symmetric matrix A, packed
   45: *          columnwise in a linear array.  The j-th column of A is stored
   46: *          in the array AP as follows:
   47: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   48: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   49: *
   50: *  AFP     (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
   51: *          The triangular factor U or L from the Cholesky factorization
   52: *          A = U**T*U or A = L*L**T, as computed by DPPTRF/ZPPTRF,
   53: *          packed columnwise in a linear array in the same format as A
   54: *          (see AP).
   55: *
   56: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
   57: *          The right hand side matrix B.
   58: *
   59: *  LDB     (input) INTEGER
   60: *          The leading dimension of the array B.  LDB >= max(1,N).
   61: *
   62: *  X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
   63: *          On entry, the solution matrix X, as computed by DPPTRS.
   64: *          On exit, the improved solution matrix X.
   65: *
   66: *  LDX     (input) INTEGER
   67: *          The leading dimension of the array X.  LDX >= max(1,N).
   68: *
   69: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   70: *          The estimated forward error bound for each solution vector
   71: *          X(j) (the j-th column of the solution matrix X).
   72: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
   73: *          is an estimated upper bound for the magnitude of the largest
   74: *          element in (X(j) - XTRUE) divided by the magnitude of the
   75: *          largest element in X(j).  The estimate is as reliable as
   76: *          the estimate for RCOND, and is almost always a slight
   77: *          overestimate of the true error.
   78: *
   79: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   80: *          The componentwise relative backward error of each solution
   81: *          vector X(j) (i.e., the smallest relative change in
   82: *          any element of A or B that makes X(j) an exact solution).
   83: *
   84: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
   85: *
   86: *  IWORK   (workspace) INTEGER array, dimension (N)
   87: *
   88: *  INFO    (output) INTEGER
   89: *          = 0:  successful exit
   90: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   91: *
   92: *  Internal Parameters
   93: *  ===================
   94: *
   95: *  ITMAX is the maximum number of steps of iterative refinement.
   96: *
   97: *  =====================================================================
   98: *
   99: *     .. Parameters ..
  100:       INTEGER            ITMAX
  101:       PARAMETER          ( ITMAX = 5 )
  102:       DOUBLE PRECISION   ZERO
  103:       PARAMETER          ( ZERO = 0.0D+0 )
  104:       DOUBLE PRECISION   ONE
  105:       PARAMETER          ( ONE = 1.0D+0 )
  106:       DOUBLE PRECISION   TWO
  107:       PARAMETER          ( TWO = 2.0D+0 )
  108:       DOUBLE PRECISION   THREE
  109:       PARAMETER          ( THREE = 3.0D+0 )
  110: *     ..
  111: *     .. Local Scalars ..
  112:       LOGICAL            UPPER
  113:       INTEGER            COUNT, I, IK, J, K, KASE, KK, NZ
  114:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  115: *     ..
  116: *     .. Local Arrays ..
  117:       INTEGER            ISAVE( 3 )
  118: *     ..
  119: *     .. External Subroutines ..
  120:       EXTERNAL           DAXPY, DCOPY, DLACN2, DPPTRS, DSPMV, XERBLA
  121: *     ..
  122: *     .. Intrinsic Functions ..
  123:       INTRINSIC          ABS, MAX
  124: *     ..
  125: *     .. External Functions ..
  126:       LOGICAL            LSAME
  127:       DOUBLE PRECISION   DLAMCH
  128:       EXTERNAL           LSAME, DLAMCH
  129: *     ..
  130: *     .. Executable Statements ..
  131: *
  132: *     Test the input parameters.
  133: *
  134:       INFO = 0
  135:       UPPER = LSAME( UPLO, 'U' )
  136:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  137:          INFO = -1
  138:       ELSE IF( N.LT.0 ) THEN
  139:          INFO = -2
  140:       ELSE IF( NRHS.LT.0 ) THEN
  141:          INFO = -3
  142:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  143:          INFO = -7
  144:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  145:          INFO = -9
  146:       END IF
  147:       IF( INFO.NE.0 ) THEN
  148:          CALL XERBLA( 'DPPRFS', -INFO )
  149:          RETURN
  150:       END IF
  151: *
  152: *     Quick return if possible
  153: *
  154:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  155:          DO 10 J = 1, NRHS
  156:             FERR( J ) = ZERO
  157:             BERR( J ) = ZERO
  158:    10    CONTINUE
  159:          RETURN
  160:       END IF
  161: *
  162: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  163: *
  164:       NZ = N + 1
  165:       EPS = DLAMCH( 'Epsilon' )
  166:       SAFMIN = DLAMCH( 'Safe minimum' )
  167:       SAFE1 = NZ*SAFMIN
  168:       SAFE2 = SAFE1 / EPS
  169: *
  170: *     Do for each right hand side
  171: *
  172:       DO 140 J = 1, NRHS
  173: *
  174:          COUNT = 1
  175:          LSTRES = THREE
  176:    20    CONTINUE
  177: *
  178: *        Loop until stopping criterion is satisfied.
  179: *
  180: *        Compute residual R = B - A * X
  181: *
  182:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  183:          CALL DSPMV( UPLO, N, -ONE, AP, X( 1, J ), 1, ONE, WORK( N+1 ),
  184:      $               1 )
  185: *
  186: *        Compute componentwise relative backward error from formula
  187: *
  188: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  189: *
  190: *        where abs(Z) is the componentwise absolute value of the matrix
  191: *        or vector Z.  If the i-th component of the denominator is less
  192: *        than SAFE2, then SAFE1 is added to the i-th components of the
  193: *        numerator and denominator before dividing.
  194: *
  195:          DO 30 I = 1, N
  196:             WORK( I ) = ABS( B( I, J ) )
  197:    30    CONTINUE
  198: *
  199: *        Compute abs(A)*abs(X) + abs(B).
  200: *
  201:          KK = 1
  202:          IF( UPPER ) THEN
  203:             DO 50 K = 1, N
  204:                S = ZERO
  205:                XK = ABS( X( K, J ) )
  206:                IK = KK
  207:                DO 40 I = 1, K - 1
  208:                   WORK( I ) = WORK( I ) + ABS( AP( IK ) )*XK
  209:                   S = S + ABS( AP( IK ) )*ABS( X( I, J ) )
  210:                   IK = IK + 1
  211:    40          CONTINUE
  212:                WORK( K ) = WORK( K ) + ABS( AP( KK+K-1 ) )*XK + S
  213:                KK = KK + K
  214:    50       CONTINUE
  215:          ELSE
  216:             DO 70 K = 1, N
  217:                S = ZERO
  218:                XK = ABS( X( K, J ) )
  219:                WORK( K ) = WORK( K ) + ABS( AP( KK ) )*XK
  220:                IK = KK + 1
  221:                DO 60 I = K + 1, N
  222:                   WORK( I ) = WORK( I ) + ABS( AP( IK ) )*XK
  223:                   S = S + ABS( AP( IK ) )*ABS( X( I, J ) )
  224:                   IK = IK + 1
  225:    60          CONTINUE
  226:                WORK( K ) = WORK( K ) + S
  227:                KK = KK + ( N-K+1 )
  228:    70       CONTINUE
  229:          END IF
  230:          S = ZERO
  231:          DO 80 I = 1, N
  232:             IF( WORK( I ).GT.SAFE2 ) THEN
  233:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  234:             ELSE
  235:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  236:      $             ( WORK( I )+SAFE1 ) )
  237:             END IF
  238:    80    CONTINUE
  239:          BERR( J ) = S
  240: *
  241: *        Test stopping criterion. Continue iterating if
  242: *           1) The residual BERR(J) is larger than machine epsilon, and
  243: *           2) BERR(J) decreased by at least a factor of 2 during the
  244: *              last iteration, and
  245: *           3) At most ITMAX iterations tried.
  246: *
  247:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  248:      $       COUNT.LE.ITMAX ) THEN
  249: *
  250: *           Update solution and try again.
  251: *
  252:             CALL DPPTRS( UPLO, N, 1, AFP, WORK( N+1 ), N, INFO )
  253:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  254:             LSTRES = BERR( J )
  255:             COUNT = COUNT + 1
  256:             GO TO 20
  257:          END IF
  258: *
  259: *        Bound error from formula
  260: *
  261: *        norm(X - XTRUE) / norm(X) .le. FERR =
  262: *        norm( abs(inv(A))*
  263: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  264: *
  265: *        where
  266: *          norm(Z) is the magnitude of the largest component of Z
  267: *          inv(A) is the inverse of A
  268: *          abs(Z) is the componentwise absolute value of the matrix or
  269: *             vector Z
  270: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  271: *          EPS is machine epsilon
  272: *
  273: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  274: *        is incremented by SAFE1 if the i-th component of
  275: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  276: *
  277: *        Use DLACN2 to estimate the infinity-norm of the matrix
  278: *           inv(A) * diag(W),
  279: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  280: *
  281:          DO 90 I = 1, N
  282:             IF( WORK( I ).GT.SAFE2 ) THEN
  283:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  284:             ELSE
  285:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  286:             END IF
  287:    90    CONTINUE
  288: *
  289:          KASE = 0
  290:   100    CONTINUE
  291:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  292:      $                KASE, ISAVE )
  293:          IF( KASE.NE.0 ) THEN
  294:             IF( KASE.EQ.1 ) THEN
  295: *
  296: *              Multiply by diag(W)*inv(A').
  297: *
  298:                CALL DPPTRS( UPLO, N, 1, AFP, WORK( N+1 ), N, INFO )
  299:                DO 110 I = 1, N
  300:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  301:   110          CONTINUE
  302:             ELSE IF( KASE.EQ.2 ) THEN
  303: *
  304: *              Multiply by inv(A)*diag(W).
  305: *
  306:                DO 120 I = 1, N
  307:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  308:   120          CONTINUE
  309:                CALL DPPTRS( UPLO, N, 1, AFP, WORK( N+1 ), N, INFO )
  310:             END IF
  311:             GO TO 100
  312:          END IF
  313: *
  314: *        Normalize error.
  315: *
  316:          LSTRES = ZERO
  317:          DO 130 I = 1, N
  318:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  319:   130    CONTINUE
  320:          IF( LSTRES.NE.ZERO )
  321:      $      FERR( J ) = FERR( J ) / LSTRES
  322: *
  323:   140 CONTINUE
  324: *
  325:       RETURN
  326: *
  327: *     End of DPPRFS
  328: *
  329:       END

CVSweb interface <joel.bertrand@systella.fr>