Annotation of rpl/lapack/lapack/dpprfs.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE DPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR,
                      2:      $                   BERR, WORK, IWORK, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          UPLO
                     13:       INTEGER            INFO, LDB, LDX, N, NRHS
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IWORK( * )
                     17:       DOUBLE PRECISION   AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
                     18:      $                   FERR( * ), WORK( * ), X( LDX, * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  DPPRFS improves the computed solution to a system of linear
                     25: *  equations when the coefficient matrix is symmetric positive definite
                     26: *  and packed, and provides error bounds and backward error estimates
                     27: *  for the solution.
                     28: *
                     29: *  Arguments
                     30: *  =========
                     31: *
                     32: *  UPLO    (input) CHARACTER*1
                     33: *          = 'U':  Upper triangle of A is stored;
                     34: *          = 'L':  Lower triangle of A is stored.
                     35: *
                     36: *  N       (input) INTEGER
                     37: *          The order of the matrix A.  N >= 0.
                     38: *
                     39: *  NRHS    (input) INTEGER
                     40: *          The number of right hand sides, i.e., the number of columns
                     41: *          of the matrices B and X.  NRHS >= 0.
                     42: *
                     43: *  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     44: *          The upper or lower triangle of the symmetric matrix A, packed
                     45: *          columnwise in a linear array.  The j-th column of A is stored
                     46: *          in the array AP as follows:
                     47: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     48: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
                     49: *
                     50: *  AFP     (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     51: *          The triangular factor U or L from the Cholesky factorization
                     52: *          A = U**T*U or A = L*L**T, as computed by DPPTRF/ZPPTRF,
                     53: *          packed columnwise in a linear array in the same format as A
                     54: *          (see AP).
                     55: *
                     56: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
                     57: *          The right hand side matrix B.
                     58: *
                     59: *  LDB     (input) INTEGER
                     60: *          The leading dimension of the array B.  LDB >= max(1,N).
                     61: *
                     62: *  X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
                     63: *          On entry, the solution matrix X, as computed by DPPTRS.
                     64: *          On exit, the improved solution matrix X.
                     65: *
                     66: *  LDX     (input) INTEGER
                     67: *          The leading dimension of the array X.  LDX >= max(1,N).
                     68: *
                     69: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     70: *          The estimated forward error bound for each solution vector
                     71: *          X(j) (the j-th column of the solution matrix X).
                     72: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                     73: *          is an estimated upper bound for the magnitude of the largest
                     74: *          element in (X(j) - XTRUE) divided by the magnitude of the
                     75: *          largest element in X(j).  The estimate is as reliable as
                     76: *          the estimate for RCOND, and is almost always a slight
                     77: *          overestimate of the true error.
                     78: *
                     79: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     80: *          The componentwise relative backward error of each solution
                     81: *          vector X(j) (i.e., the smallest relative change in
                     82: *          any element of A or B that makes X(j) an exact solution).
                     83: *
                     84: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
                     85: *
                     86: *  IWORK   (workspace) INTEGER array, dimension (N)
                     87: *
                     88: *  INFO    (output) INTEGER
                     89: *          = 0:  successful exit
                     90: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     91: *
                     92: *  Internal Parameters
                     93: *  ===================
                     94: *
                     95: *  ITMAX is the maximum number of steps of iterative refinement.
                     96: *
                     97: *  =====================================================================
                     98: *
                     99: *     .. Parameters ..
                    100:       INTEGER            ITMAX
                    101:       PARAMETER          ( ITMAX = 5 )
                    102:       DOUBLE PRECISION   ZERO
                    103:       PARAMETER          ( ZERO = 0.0D+0 )
                    104:       DOUBLE PRECISION   ONE
                    105:       PARAMETER          ( ONE = 1.0D+0 )
                    106:       DOUBLE PRECISION   TWO
                    107:       PARAMETER          ( TWO = 2.0D+0 )
                    108:       DOUBLE PRECISION   THREE
                    109:       PARAMETER          ( THREE = 3.0D+0 )
                    110: *     ..
                    111: *     .. Local Scalars ..
                    112:       LOGICAL            UPPER
                    113:       INTEGER            COUNT, I, IK, J, K, KASE, KK, NZ
                    114:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    115: *     ..
                    116: *     .. Local Arrays ..
                    117:       INTEGER            ISAVE( 3 )
                    118: *     ..
                    119: *     .. External Subroutines ..
                    120:       EXTERNAL           DAXPY, DCOPY, DLACN2, DPPTRS, DSPMV, XERBLA
                    121: *     ..
                    122: *     .. Intrinsic Functions ..
                    123:       INTRINSIC          ABS, MAX
                    124: *     ..
                    125: *     .. External Functions ..
                    126:       LOGICAL            LSAME
                    127:       DOUBLE PRECISION   DLAMCH
                    128:       EXTERNAL           LSAME, DLAMCH
                    129: *     ..
                    130: *     .. Executable Statements ..
                    131: *
                    132: *     Test the input parameters.
                    133: *
                    134:       INFO = 0
                    135:       UPPER = LSAME( UPLO, 'U' )
                    136:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    137:          INFO = -1
                    138:       ELSE IF( N.LT.0 ) THEN
                    139:          INFO = -2
                    140:       ELSE IF( NRHS.LT.0 ) THEN
                    141:          INFO = -3
                    142:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    143:          INFO = -7
                    144:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    145:          INFO = -9
                    146:       END IF
                    147:       IF( INFO.NE.0 ) THEN
                    148:          CALL XERBLA( 'DPPRFS', -INFO )
                    149:          RETURN
                    150:       END IF
                    151: *
                    152: *     Quick return if possible
                    153: *
                    154:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    155:          DO 10 J = 1, NRHS
                    156:             FERR( J ) = ZERO
                    157:             BERR( J ) = ZERO
                    158:    10    CONTINUE
                    159:          RETURN
                    160:       END IF
                    161: *
                    162: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    163: *
                    164:       NZ = N + 1
                    165:       EPS = DLAMCH( 'Epsilon' )
                    166:       SAFMIN = DLAMCH( 'Safe minimum' )
                    167:       SAFE1 = NZ*SAFMIN
                    168:       SAFE2 = SAFE1 / EPS
                    169: *
                    170: *     Do for each right hand side
                    171: *
                    172:       DO 140 J = 1, NRHS
                    173: *
                    174:          COUNT = 1
                    175:          LSTRES = THREE
                    176:    20    CONTINUE
                    177: *
                    178: *        Loop until stopping criterion is satisfied.
                    179: *
                    180: *        Compute residual R = B - A * X
                    181: *
                    182:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
                    183:          CALL DSPMV( UPLO, N, -ONE, AP, X( 1, J ), 1, ONE, WORK( N+1 ),
                    184:      $               1 )
                    185: *
                    186: *        Compute componentwise relative backward error from formula
                    187: *
                    188: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    189: *
                    190: *        where abs(Z) is the componentwise absolute value of the matrix
                    191: *        or vector Z.  If the i-th component of the denominator is less
                    192: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    193: *        numerator and denominator before dividing.
                    194: *
                    195:          DO 30 I = 1, N
                    196:             WORK( I ) = ABS( B( I, J ) )
                    197:    30    CONTINUE
                    198: *
                    199: *        Compute abs(A)*abs(X) + abs(B).
                    200: *
                    201:          KK = 1
                    202:          IF( UPPER ) THEN
                    203:             DO 50 K = 1, N
                    204:                S = ZERO
                    205:                XK = ABS( X( K, J ) )
                    206:                IK = KK
                    207:                DO 40 I = 1, K - 1
                    208:                   WORK( I ) = WORK( I ) + ABS( AP( IK ) )*XK
                    209:                   S = S + ABS( AP( IK ) )*ABS( X( I, J ) )
                    210:                   IK = IK + 1
                    211:    40          CONTINUE
                    212:                WORK( K ) = WORK( K ) + ABS( AP( KK+K-1 ) )*XK + S
                    213:                KK = KK + K
                    214:    50       CONTINUE
                    215:          ELSE
                    216:             DO 70 K = 1, N
                    217:                S = ZERO
                    218:                XK = ABS( X( K, J ) )
                    219:                WORK( K ) = WORK( K ) + ABS( AP( KK ) )*XK
                    220:                IK = KK + 1
                    221:                DO 60 I = K + 1, N
                    222:                   WORK( I ) = WORK( I ) + ABS( AP( IK ) )*XK
                    223:                   S = S + ABS( AP( IK ) )*ABS( X( I, J ) )
                    224:                   IK = IK + 1
                    225:    60          CONTINUE
                    226:                WORK( K ) = WORK( K ) + S
                    227:                KK = KK + ( N-K+1 )
                    228:    70       CONTINUE
                    229:          END IF
                    230:          S = ZERO
                    231:          DO 80 I = 1, N
                    232:             IF( WORK( I ).GT.SAFE2 ) THEN
                    233:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
                    234:             ELSE
                    235:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
                    236:      $             ( WORK( I )+SAFE1 ) )
                    237:             END IF
                    238:    80    CONTINUE
                    239:          BERR( J ) = S
                    240: *
                    241: *        Test stopping criterion. Continue iterating if
                    242: *           1) The residual BERR(J) is larger than machine epsilon, and
                    243: *           2) BERR(J) decreased by at least a factor of 2 during the
                    244: *              last iteration, and
                    245: *           3) At most ITMAX iterations tried.
                    246: *
                    247:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    248:      $       COUNT.LE.ITMAX ) THEN
                    249: *
                    250: *           Update solution and try again.
                    251: *
                    252:             CALL DPPTRS( UPLO, N, 1, AFP, WORK( N+1 ), N, INFO )
                    253:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
                    254:             LSTRES = BERR( J )
                    255:             COUNT = COUNT + 1
                    256:             GO TO 20
                    257:          END IF
                    258: *
                    259: *        Bound error from formula
                    260: *
                    261: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    262: *        norm( abs(inv(A))*
                    263: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    264: *
                    265: *        where
                    266: *          norm(Z) is the magnitude of the largest component of Z
                    267: *          inv(A) is the inverse of A
                    268: *          abs(Z) is the componentwise absolute value of the matrix or
                    269: *             vector Z
                    270: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    271: *          EPS is machine epsilon
                    272: *
                    273: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    274: *        is incremented by SAFE1 if the i-th component of
                    275: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    276: *
                    277: *        Use DLACN2 to estimate the infinity-norm of the matrix
                    278: *           inv(A) * diag(W),
                    279: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
                    280: *
                    281:          DO 90 I = 1, N
                    282:             IF( WORK( I ).GT.SAFE2 ) THEN
                    283:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
                    284:             ELSE
                    285:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
                    286:             END IF
                    287:    90    CONTINUE
                    288: *
                    289:          KASE = 0
                    290:   100    CONTINUE
                    291:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
                    292:      $                KASE, ISAVE )
                    293:          IF( KASE.NE.0 ) THEN
                    294:             IF( KASE.EQ.1 ) THEN
                    295: *
                    296: *              Multiply by diag(W)*inv(A').
                    297: *
                    298:                CALL DPPTRS( UPLO, N, 1, AFP, WORK( N+1 ), N, INFO )
                    299:                DO 110 I = 1, N
                    300:                   WORK( N+I ) = WORK( I )*WORK( N+I )
                    301:   110          CONTINUE
                    302:             ELSE IF( KASE.EQ.2 ) THEN
                    303: *
                    304: *              Multiply by inv(A)*diag(W).
                    305: *
                    306:                DO 120 I = 1, N
                    307:                   WORK( N+I ) = WORK( I )*WORK( N+I )
                    308:   120          CONTINUE
                    309:                CALL DPPTRS( UPLO, N, 1, AFP, WORK( N+1 ), N, INFO )
                    310:             END IF
                    311:             GO TO 100
                    312:          END IF
                    313: *
                    314: *        Normalize error.
                    315: *
                    316:          LSTRES = ZERO
                    317:          DO 130 I = 1, N
                    318:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
                    319:   130    CONTINUE
                    320:          IF( LSTRES.NE.ZERO )
                    321:      $      FERR( J ) = FERR( J ) / LSTRES
                    322: *
                    323:   140 CONTINUE
                    324: *
                    325:       RETURN
                    326: *
                    327: *     End of DPPRFS
                    328: *
                    329:       END

CVSweb interface <joel.bertrand@systella.fr>