Annotation of rpl/lapack/lapack/dpprfs.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR,
        !             2:      $                   BERR, WORK, IWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
        !            10: *
        !            11: *     .. Scalar Arguments ..
        !            12:       CHARACTER          UPLO
        !            13:       INTEGER            INFO, LDB, LDX, N, NRHS
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       INTEGER            IWORK( * )
        !            17:       DOUBLE PRECISION   AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
        !            18:      $                   FERR( * ), WORK( * ), X( LDX, * )
        !            19: *     ..
        !            20: *
        !            21: *  Purpose
        !            22: *  =======
        !            23: *
        !            24: *  DPPRFS improves the computed solution to a system of linear
        !            25: *  equations when the coefficient matrix is symmetric positive definite
        !            26: *  and packed, and provides error bounds and backward error estimates
        !            27: *  for the solution.
        !            28: *
        !            29: *  Arguments
        !            30: *  =========
        !            31: *
        !            32: *  UPLO    (input) CHARACTER*1
        !            33: *          = 'U':  Upper triangle of A is stored;
        !            34: *          = 'L':  Lower triangle of A is stored.
        !            35: *
        !            36: *  N       (input) INTEGER
        !            37: *          The order of the matrix A.  N >= 0.
        !            38: *
        !            39: *  NRHS    (input) INTEGER
        !            40: *          The number of right hand sides, i.e., the number of columns
        !            41: *          of the matrices B and X.  NRHS >= 0.
        !            42: *
        !            43: *  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
        !            44: *          The upper or lower triangle of the symmetric matrix A, packed
        !            45: *          columnwise in a linear array.  The j-th column of A is stored
        !            46: *          in the array AP as follows:
        !            47: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
        !            48: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
        !            49: *
        !            50: *  AFP     (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
        !            51: *          The triangular factor U or L from the Cholesky factorization
        !            52: *          A = U**T*U or A = L*L**T, as computed by DPPTRF/ZPPTRF,
        !            53: *          packed columnwise in a linear array in the same format as A
        !            54: *          (see AP).
        !            55: *
        !            56: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
        !            57: *          The right hand side matrix B.
        !            58: *
        !            59: *  LDB     (input) INTEGER
        !            60: *          The leading dimension of the array B.  LDB >= max(1,N).
        !            61: *
        !            62: *  X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
        !            63: *          On entry, the solution matrix X, as computed by DPPTRS.
        !            64: *          On exit, the improved solution matrix X.
        !            65: *
        !            66: *  LDX     (input) INTEGER
        !            67: *          The leading dimension of the array X.  LDX >= max(1,N).
        !            68: *
        !            69: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !            70: *          The estimated forward error bound for each solution vector
        !            71: *          X(j) (the j-th column of the solution matrix X).
        !            72: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !            73: *          is an estimated upper bound for the magnitude of the largest
        !            74: *          element in (X(j) - XTRUE) divided by the magnitude of the
        !            75: *          largest element in X(j).  The estimate is as reliable as
        !            76: *          the estimate for RCOND, and is almost always a slight
        !            77: *          overestimate of the true error.
        !            78: *
        !            79: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !            80: *          The componentwise relative backward error of each solution
        !            81: *          vector X(j) (i.e., the smallest relative change in
        !            82: *          any element of A or B that makes X(j) an exact solution).
        !            83: *
        !            84: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
        !            85: *
        !            86: *  IWORK   (workspace) INTEGER array, dimension (N)
        !            87: *
        !            88: *  INFO    (output) INTEGER
        !            89: *          = 0:  successful exit
        !            90: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !            91: *
        !            92: *  Internal Parameters
        !            93: *  ===================
        !            94: *
        !            95: *  ITMAX is the maximum number of steps of iterative refinement.
        !            96: *
        !            97: *  =====================================================================
        !            98: *
        !            99: *     .. Parameters ..
        !           100:       INTEGER            ITMAX
        !           101:       PARAMETER          ( ITMAX = 5 )
        !           102:       DOUBLE PRECISION   ZERO
        !           103:       PARAMETER          ( ZERO = 0.0D+0 )
        !           104:       DOUBLE PRECISION   ONE
        !           105:       PARAMETER          ( ONE = 1.0D+0 )
        !           106:       DOUBLE PRECISION   TWO
        !           107:       PARAMETER          ( TWO = 2.0D+0 )
        !           108:       DOUBLE PRECISION   THREE
        !           109:       PARAMETER          ( THREE = 3.0D+0 )
        !           110: *     ..
        !           111: *     .. Local Scalars ..
        !           112:       LOGICAL            UPPER
        !           113:       INTEGER            COUNT, I, IK, J, K, KASE, KK, NZ
        !           114:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
        !           115: *     ..
        !           116: *     .. Local Arrays ..
        !           117:       INTEGER            ISAVE( 3 )
        !           118: *     ..
        !           119: *     .. External Subroutines ..
        !           120:       EXTERNAL           DAXPY, DCOPY, DLACN2, DPPTRS, DSPMV, XERBLA
        !           121: *     ..
        !           122: *     .. Intrinsic Functions ..
        !           123:       INTRINSIC          ABS, MAX
        !           124: *     ..
        !           125: *     .. External Functions ..
        !           126:       LOGICAL            LSAME
        !           127:       DOUBLE PRECISION   DLAMCH
        !           128:       EXTERNAL           LSAME, DLAMCH
        !           129: *     ..
        !           130: *     .. Executable Statements ..
        !           131: *
        !           132: *     Test the input parameters.
        !           133: *
        !           134:       INFO = 0
        !           135:       UPPER = LSAME( UPLO, 'U' )
        !           136:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
        !           137:          INFO = -1
        !           138:       ELSE IF( N.LT.0 ) THEN
        !           139:          INFO = -2
        !           140:       ELSE IF( NRHS.LT.0 ) THEN
        !           141:          INFO = -3
        !           142:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           143:          INFO = -7
        !           144:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           145:          INFO = -9
        !           146:       END IF
        !           147:       IF( INFO.NE.0 ) THEN
        !           148:          CALL XERBLA( 'DPPRFS', -INFO )
        !           149:          RETURN
        !           150:       END IF
        !           151: *
        !           152: *     Quick return if possible
        !           153: *
        !           154:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
        !           155:          DO 10 J = 1, NRHS
        !           156:             FERR( J ) = ZERO
        !           157:             BERR( J ) = ZERO
        !           158:    10    CONTINUE
        !           159:          RETURN
        !           160:       END IF
        !           161: *
        !           162: *     NZ = maximum number of nonzero elements in each row of A, plus 1
        !           163: *
        !           164:       NZ = N + 1
        !           165:       EPS = DLAMCH( 'Epsilon' )
        !           166:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           167:       SAFE1 = NZ*SAFMIN
        !           168:       SAFE2 = SAFE1 / EPS
        !           169: *
        !           170: *     Do for each right hand side
        !           171: *
        !           172:       DO 140 J = 1, NRHS
        !           173: *
        !           174:          COUNT = 1
        !           175:          LSTRES = THREE
        !           176:    20    CONTINUE
        !           177: *
        !           178: *        Loop until stopping criterion is satisfied.
        !           179: *
        !           180: *        Compute residual R = B - A * X
        !           181: *
        !           182:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
        !           183:          CALL DSPMV( UPLO, N, -ONE, AP, X( 1, J ), 1, ONE, WORK( N+1 ),
        !           184:      $               1 )
        !           185: *
        !           186: *        Compute componentwise relative backward error from formula
        !           187: *
        !           188: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
        !           189: *
        !           190: *        where abs(Z) is the componentwise absolute value of the matrix
        !           191: *        or vector Z.  If the i-th component of the denominator is less
        !           192: *        than SAFE2, then SAFE1 is added to the i-th components of the
        !           193: *        numerator and denominator before dividing.
        !           194: *
        !           195:          DO 30 I = 1, N
        !           196:             WORK( I ) = ABS( B( I, J ) )
        !           197:    30    CONTINUE
        !           198: *
        !           199: *        Compute abs(A)*abs(X) + abs(B).
        !           200: *
        !           201:          KK = 1
        !           202:          IF( UPPER ) THEN
        !           203:             DO 50 K = 1, N
        !           204:                S = ZERO
        !           205:                XK = ABS( X( K, J ) )
        !           206:                IK = KK
        !           207:                DO 40 I = 1, K - 1
        !           208:                   WORK( I ) = WORK( I ) + ABS( AP( IK ) )*XK
        !           209:                   S = S + ABS( AP( IK ) )*ABS( X( I, J ) )
        !           210:                   IK = IK + 1
        !           211:    40          CONTINUE
        !           212:                WORK( K ) = WORK( K ) + ABS( AP( KK+K-1 ) )*XK + S
        !           213:                KK = KK + K
        !           214:    50       CONTINUE
        !           215:          ELSE
        !           216:             DO 70 K = 1, N
        !           217:                S = ZERO
        !           218:                XK = ABS( X( K, J ) )
        !           219:                WORK( K ) = WORK( K ) + ABS( AP( KK ) )*XK
        !           220:                IK = KK + 1
        !           221:                DO 60 I = K + 1, N
        !           222:                   WORK( I ) = WORK( I ) + ABS( AP( IK ) )*XK
        !           223:                   S = S + ABS( AP( IK ) )*ABS( X( I, J ) )
        !           224:                   IK = IK + 1
        !           225:    60          CONTINUE
        !           226:                WORK( K ) = WORK( K ) + S
        !           227:                KK = KK + ( N-K+1 )
        !           228:    70       CONTINUE
        !           229:          END IF
        !           230:          S = ZERO
        !           231:          DO 80 I = 1, N
        !           232:             IF( WORK( I ).GT.SAFE2 ) THEN
        !           233:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
        !           234:             ELSE
        !           235:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
        !           236:      $             ( WORK( I )+SAFE1 ) )
        !           237:             END IF
        !           238:    80    CONTINUE
        !           239:          BERR( J ) = S
        !           240: *
        !           241: *        Test stopping criterion. Continue iterating if
        !           242: *           1) The residual BERR(J) is larger than machine epsilon, and
        !           243: *           2) BERR(J) decreased by at least a factor of 2 during the
        !           244: *              last iteration, and
        !           245: *           3) At most ITMAX iterations tried.
        !           246: *
        !           247:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
        !           248:      $       COUNT.LE.ITMAX ) THEN
        !           249: *
        !           250: *           Update solution and try again.
        !           251: *
        !           252:             CALL DPPTRS( UPLO, N, 1, AFP, WORK( N+1 ), N, INFO )
        !           253:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
        !           254:             LSTRES = BERR( J )
        !           255:             COUNT = COUNT + 1
        !           256:             GO TO 20
        !           257:          END IF
        !           258: *
        !           259: *        Bound error from formula
        !           260: *
        !           261: *        norm(X - XTRUE) / norm(X) .le. FERR =
        !           262: *        norm( abs(inv(A))*
        !           263: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
        !           264: *
        !           265: *        where
        !           266: *          norm(Z) is the magnitude of the largest component of Z
        !           267: *          inv(A) is the inverse of A
        !           268: *          abs(Z) is the componentwise absolute value of the matrix or
        !           269: *             vector Z
        !           270: *          NZ is the maximum number of nonzeros in any row of A, plus 1
        !           271: *          EPS is machine epsilon
        !           272: *
        !           273: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
        !           274: *        is incremented by SAFE1 if the i-th component of
        !           275: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
        !           276: *
        !           277: *        Use DLACN2 to estimate the infinity-norm of the matrix
        !           278: *           inv(A) * diag(W),
        !           279: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
        !           280: *
        !           281:          DO 90 I = 1, N
        !           282:             IF( WORK( I ).GT.SAFE2 ) THEN
        !           283:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
        !           284:             ELSE
        !           285:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
        !           286:             END IF
        !           287:    90    CONTINUE
        !           288: *
        !           289:          KASE = 0
        !           290:   100    CONTINUE
        !           291:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
        !           292:      $                KASE, ISAVE )
        !           293:          IF( KASE.NE.0 ) THEN
        !           294:             IF( KASE.EQ.1 ) THEN
        !           295: *
        !           296: *              Multiply by diag(W)*inv(A').
        !           297: *
        !           298:                CALL DPPTRS( UPLO, N, 1, AFP, WORK( N+1 ), N, INFO )
        !           299:                DO 110 I = 1, N
        !           300:                   WORK( N+I ) = WORK( I )*WORK( N+I )
        !           301:   110          CONTINUE
        !           302:             ELSE IF( KASE.EQ.2 ) THEN
        !           303: *
        !           304: *              Multiply by inv(A)*diag(W).
        !           305: *
        !           306:                DO 120 I = 1, N
        !           307:                   WORK( N+I ) = WORK( I )*WORK( N+I )
        !           308:   120          CONTINUE
        !           309:                CALL DPPTRS( UPLO, N, 1, AFP, WORK( N+1 ), N, INFO )
        !           310:             END IF
        !           311:             GO TO 100
        !           312:          END IF
        !           313: *
        !           314: *        Normalize error.
        !           315: *
        !           316:          LSTRES = ZERO
        !           317:          DO 130 I = 1, N
        !           318:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
        !           319:   130    CONTINUE
        !           320:          IF( LSTRES.NE.ZERO )
        !           321:      $      FERR( J ) = FERR( J ) / LSTRES
        !           322: *
        !           323:   140 CONTINUE
        !           324: *
        !           325:       RETURN
        !           326: *
        !           327: *     End of DPPRFS
        !           328: *
        !           329:       END

CVSweb interface <joel.bertrand@systella.fr>