Annotation of rpl/lapack/lapack/dpotf2.f, revision 1.19

1.12      bertrand    1: *> \brief \b DPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DPOTF2 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpotf2.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpotf2.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpotf2.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO )
1.16      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, LDA, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   A( LDA, * )
                     29: *       ..
1.16      bertrand   30: *
1.9       bertrand   31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> DPOTF2 computes the Cholesky factorization of a real symmetric
                     38: *> positive definite matrix A.
                     39: *>
                     40: *> The factorization has the form
                     41: *>    A = U**T * U ,  if UPLO = 'U', or
                     42: *>    A = L  * L**T,  if UPLO = 'L',
                     43: *> where U is an upper triangular matrix and L is lower triangular.
                     44: *>
                     45: *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
                     46: *> \endverbatim
                     47: *
                     48: *  Arguments:
                     49: *  ==========
                     50: *
                     51: *> \param[in] UPLO
                     52: *> \verbatim
                     53: *>          UPLO is CHARACTER*1
                     54: *>          Specifies whether the upper or lower triangular part of the
                     55: *>          symmetric matrix A is stored.
                     56: *>          = 'U':  Upper triangular
                     57: *>          = 'L':  Lower triangular
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] N
                     61: *> \verbatim
                     62: *>          N is INTEGER
                     63: *>          The order of the matrix A.  N >= 0.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in,out] A
                     67: *> \verbatim
                     68: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     69: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     70: *>          n by n upper triangular part of A contains the upper
                     71: *>          triangular part of the matrix A, and the strictly lower
                     72: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     73: *>          leading n by n lower triangular part of A contains the lower
                     74: *>          triangular part of the matrix A, and the strictly upper
                     75: *>          triangular part of A is not referenced.
                     76: *>
                     77: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
                     78: *>          factorization A = U**T *U  or A = L*L**T.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] LDA
                     82: *> \verbatim
                     83: *>          LDA is INTEGER
                     84: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[out] INFO
                     88: *> \verbatim
                     89: *>          INFO is INTEGER
                     90: *>          = 0: successful exit
                     91: *>          < 0: if INFO = -k, the k-th argument had an illegal value
                     92: *>          > 0: if INFO = k, the leading minor of order k is not
                     93: *>               positive definite, and the factorization could not be
                     94: *>               completed.
                     95: *> \endverbatim
                     96: *
                     97: *  Authors:
                     98: *  ========
                     99: *
1.16      bertrand  100: *> \author Univ. of Tennessee
                    101: *> \author Univ. of California Berkeley
                    102: *> \author Univ. of Colorado Denver
                    103: *> \author NAG Ltd.
1.9       bertrand  104: *
                    105: *> \ingroup doublePOcomputational
                    106: *
                    107: *  =====================================================================
1.1       bertrand  108:       SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO )
                    109: *
1.19    ! bertrand  110: *  -- LAPACK computational routine --
1.1       bertrand  111: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    112: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    113: *
                    114: *     .. Scalar Arguments ..
                    115:       CHARACTER          UPLO
                    116:       INTEGER            INFO, LDA, N
                    117: *     ..
                    118: *     .. Array Arguments ..
                    119:       DOUBLE PRECISION   A( LDA, * )
                    120: *     ..
                    121: *
                    122: *  =====================================================================
                    123: *
                    124: *     .. Parameters ..
                    125:       DOUBLE PRECISION   ONE, ZERO
                    126:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    127: *     ..
                    128: *     .. Local Scalars ..
                    129:       LOGICAL            UPPER
                    130:       INTEGER            J
                    131:       DOUBLE PRECISION   AJJ
                    132: *     ..
                    133: *     .. External Functions ..
                    134:       LOGICAL            LSAME, DISNAN
                    135:       DOUBLE PRECISION   DDOT
                    136:       EXTERNAL           LSAME, DDOT, DISNAN
                    137: *     ..
                    138: *     .. External Subroutines ..
                    139:       EXTERNAL           DGEMV, DSCAL, XERBLA
                    140: *     ..
                    141: *     .. Intrinsic Functions ..
                    142:       INTRINSIC          MAX, SQRT
                    143: *     ..
                    144: *     .. Executable Statements ..
                    145: *
                    146: *     Test the input parameters.
                    147: *
                    148:       INFO = 0
                    149:       UPPER = LSAME( UPLO, 'U' )
                    150:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    151:          INFO = -1
                    152:       ELSE IF( N.LT.0 ) THEN
                    153:          INFO = -2
                    154:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    155:          INFO = -4
                    156:       END IF
                    157:       IF( INFO.NE.0 ) THEN
                    158:          CALL XERBLA( 'DPOTF2', -INFO )
                    159:          RETURN
                    160:       END IF
                    161: *
                    162: *     Quick return if possible
                    163: *
                    164:       IF( N.EQ.0 )
                    165:      $   RETURN
                    166: *
                    167:       IF( UPPER ) THEN
                    168: *
1.8       bertrand  169: *        Compute the Cholesky factorization A = U**T *U.
1.1       bertrand  170: *
                    171:          DO 10 J = 1, N
                    172: *
                    173: *           Compute U(J,J) and test for non-positive-definiteness.
                    174: *
                    175:             AJJ = A( J, J ) - DDOT( J-1, A( 1, J ), 1, A( 1, J ), 1 )
                    176:             IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
                    177:                A( J, J ) = AJJ
                    178:                GO TO 30
                    179:             END IF
                    180:             AJJ = SQRT( AJJ )
                    181:             A( J, J ) = AJJ
                    182: *
                    183: *           Compute elements J+1:N of row J.
                    184: *
                    185:             IF( J.LT.N ) THEN
                    186:                CALL DGEMV( 'Transpose', J-1, N-J, -ONE, A( 1, J+1 ),
                    187:      $                     LDA, A( 1, J ), 1, ONE, A( J, J+1 ), LDA )
                    188:                CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
                    189:             END IF
                    190:    10    CONTINUE
                    191:       ELSE
                    192: *
1.8       bertrand  193: *        Compute the Cholesky factorization A = L*L**T.
1.1       bertrand  194: *
                    195:          DO 20 J = 1, N
                    196: *
                    197: *           Compute L(J,J) and test for non-positive-definiteness.
                    198: *
                    199:             AJJ = A( J, J ) - DDOT( J-1, A( J, 1 ), LDA, A( J, 1 ),
                    200:      $            LDA )
                    201:             IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
                    202:                A( J, J ) = AJJ
                    203:                GO TO 30
                    204:             END IF
                    205:             AJJ = SQRT( AJJ )
                    206:             A( J, J ) = AJJ
                    207: *
                    208: *           Compute elements J+1:N of column J.
                    209: *
                    210:             IF( J.LT.N ) THEN
                    211:                CALL DGEMV( 'No transpose', N-J, J-1, -ONE, A( J+1, 1 ),
                    212:      $                     LDA, A( J, 1 ), LDA, ONE, A( J+1, J ), 1 )
                    213:                CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
                    214:             END IF
                    215:    20    CONTINUE
                    216:       END IF
                    217:       GO TO 40
                    218: *
                    219:    30 CONTINUE
                    220:       INFO = J
                    221: *
                    222:    40 CONTINUE
                    223:       RETURN
                    224: *
                    225: *     End of DPOTF2
                    226: *
                    227:       END

CVSweb interface <joel.bertrand@systella.fr>