File:  [local] / rpl / lapack / lapack / dposvxx.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:25 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief <b> DPOSVXX computes the solution to system of linear equations A * X = B for PO matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DPOSVXX + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dposvxx.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dposvxx.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dposvxx.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DPOSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
   22: *                           S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
   23: *                           N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
   24: *                           NPARAMS, PARAMS, WORK, IWORK, INFO )
   25:    26: *       .. Scalar Arguments ..
   27: *       CHARACTER          EQUED, FACT, UPLO
   28: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
   29: *      $                   N_ERR_BNDS
   30: *       DOUBLE PRECISION   RCOND, RPVGRW
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       INTEGER            IWORK( * )
   34: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   35: *      $                   X( LDX, * ), WORK( * )
   36: *       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
   37: *      $                   ERR_BNDS_NORM( NRHS, * ),
   38: *      $                   ERR_BNDS_COMP( NRHS, * )
   39: *       ..
   40: *  
   41: *
   42: *> \par Purpose:
   43: *  =============
   44: *>
   45: *> \verbatim
   46: *>
   47: *>    DPOSVXX uses the Cholesky factorization A = U**T*U or A = L*L**T
   48: *>    to compute the solution to a double precision system of linear equations
   49: *>    A * X = B, where A is an N-by-N symmetric positive definite matrix
   50: *>    and X and B are N-by-NRHS matrices.
   51: *>
   52: *>    If requested, both normwise and maximum componentwise error bounds
   53: *>    are returned. DPOSVXX will return a solution with a tiny
   54: *>    guaranteed error (O(eps) where eps is the working machine
   55: *>    precision) unless the matrix is very ill-conditioned, in which
   56: *>    case a warning is returned. Relevant condition numbers also are
   57: *>    calculated and returned.
   58: *>
   59: *>    DPOSVXX accepts user-provided factorizations and equilibration
   60: *>    factors; see the definitions of the FACT and EQUED options.
   61: *>    Solving with refinement and using a factorization from a previous
   62: *>    DPOSVXX call will also produce a solution with either O(eps)
   63: *>    errors or warnings, but we cannot make that claim for general
   64: *>    user-provided factorizations and equilibration factors if they
   65: *>    differ from what DPOSVXX would itself produce.
   66: *> \endverbatim
   67: *
   68: *> \par Description:
   69: *  =================
   70: *>
   71: *> \verbatim
   72: *>
   73: *>    The following steps are performed:
   74: *>
   75: *>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
   76: *>    the system:
   77: *>
   78: *>      diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
   79: *>
   80: *>    Whether or not the system will be equilibrated depends on the
   81: *>    scaling of the matrix A, but if equilibration is used, A is
   82: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
   83: *>
   84: *>    2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
   85: *>    factor the matrix A (after equilibration if FACT = 'E') as
   86: *>       A = U**T* U,  if UPLO = 'U', or
   87: *>       A = L * L**T,  if UPLO = 'L',
   88: *>    where U is an upper triangular matrix and L is a lower triangular
   89: *>    matrix.
   90: *>
   91: *>    3. If the leading i-by-i principal minor is not positive definite,
   92: *>    then the routine returns with INFO = i. Otherwise, the factored
   93: *>    form of A is used to estimate the condition number of the matrix
   94: *>    A (see argument RCOND).  If the reciprocal of the condition number
   95: *>    is less than machine precision, the routine still goes on to solve
   96: *>    for X and compute error bounds as described below.
   97: *>
   98: *>    4. The system of equations is solved for X using the factored form
   99: *>    of A.
  100: *>
  101: *>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
  102: *>    the routine will use iterative refinement to try to get a small
  103: *>    error and error bounds.  Refinement calculates the residual to at
  104: *>    least twice the working precision.
  105: *>
  106: *>    6. If equilibration was used, the matrix X is premultiplied by
  107: *>    diag(S) so that it solves the original system before
  108: *>    equilibration.
  109: *> \endverbatim
  110: *
  111: *  Arguments:
  112: *  ==========
  113: *
  114: *> \verbatim
  115: *>     Some optional parameters are bundled in the PARAMS array.  These
  116: *>     settings determine how refinement is performed, but often the
  117: *>     defaults are acceptable.  If the defaults are acceptable, users
  118: *>     can pass NPARAMS = 0 which prevents the source code from accessing
  119: *>     the PARAMS argument.
  120: *> \endverbatim
  121: *>
  122: *> \param[in] FACT
  123: *> \verbatim
  124: *>          FACT is CHARACTER*1
  125: *>     Specifies whether or not the factored form of the matrix A is
  126: *>     supplied on entry, and if not, whether the matrix A should be
  127: *>     equilibrated before it is factored.
  128: *>       = 'F':  On entry, AF contains the factored form of A.
  129: *>               If EQUED is not 'N', the matrix A has been
  130: *>               equilibrated with scaling factors given by S.
  131: *>               A and AF are not modified.
  132: *>       = 'N':  The matrix A will be copied to AF and factored.
  133: *>       = 'E':  The matrix A will be equilibrated if necessary, then
  134: *>               copied to AF and factored.
  135: *> \endverbatim
  136: *>
  137: *> \param[in] UPLO
  138: *> \verbatim
  139: *>          UPLO is CHARACTER*1
  140: *>       = 'U':  Upper triangle of A is stored;
  141: *>       = 'L':  Lower triangle of A is stored.
  142: *> \endverbatim
  143: *>
  144: *> \param[in] N
  145: *> \verbatim
  146: *>          N is INTEGER
  147: *>     The number of linear equations, i.e., the order of the
  148: *>     matrix A.  N >= 0.
  149: *> \endverbatim
  150: *>
  151: *> \param[in] NRHS
  152: *> \verbatim
  153: *>          NRHS is INTEGER
  154: *>     The number of right hand sides, i.e., the number of columns
  155: *>     of the matrices B and X.  NRHS >= 0.
  156: *> \endverbatim
  157: *>
  158: *> \param[in,out] A
  159: *> \verbatim
  160: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  161: *>     On entry, the symmetric matrix A, except if FACT = 'F' and EQUED =
  162: *>     'Y', then A must contain the equilibrated matrix
  163: *>     diag(S)*A*diag(S).  If UPLO = 'U', the leading N-by-N upper
  164: *>     triangular part of A contains the upper triangular part of the
  165: *>     matrix A, and the strictly lower triangular part of A is not
  166: *>     referenced.  If UPLO = 'L', the leading N-by-N lower triangular
  167: *>     part of A contains the lower triangular part of the matrix A, and
  168: *>     the strictly upper triangular part of A is not referenced.  A is
  169: *>     not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED =
  170: *>     'N' on exit.
  171: *>
  172: *>     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  173: *>     diag(S)*A*diag(S).
  174: *> \endverbatim
  175: *>
  176: *> \param[in] LDA
  177: *> \verbatim
  178: *>          LDA is INTEGER
  179: *>     The leading dimension of the array A.  LDA >= max(1,N).
  180: *> \endverbatim
  181: *>
  182: *> \param[in,out] AF
  183: *> \verbatim
  184: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
  185: *>     If FACT = 'F', then AF is an input argument and on entry
  186: *>     contains the triangular factor U or L from the Cholesky
  187: *>     factorization A = U**T*U or A = L*L**T, in the same storage
  188: *>     format as A.  If EQUED .ne. 'N', then AF is the factored
  189: *>     form of the equilibrated matrix diag(S)*A*diag(S).
  190: *>
  191: *>     If FACT = 'N', then AF is an output argument and on exit
  192: *>     returns the triangular factor U or L from the Cholesky
  193: *>     factorization A = U**T*U or A = L*L**T of the original
  194: *>     matrix A.
  195: *>
  196: *>     If FACT = 'E', then AF is an output argument and on exit
  197: *>     returns the triangular factor U or L from the Cholesky
  198: *>     factorization A = U**T*U or A = L*L**T of the equilibrated
  199: *>     matrix A (see the description of A for the form of the
  200: *>     equilibrated matrix).
  201: *> \endverbatim
  202: *>
  203: *> \param[in] LDAF
  204: *> \verbatim
  205: *>          LDAF is INTEGER
  206: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  207: *> \endverbatim
  208: *>
  209: *> \param[in,out] EQUED
  210: *> \verbatim
  211: *>          EQUED is CHARACTER*1
  212: *>     Specifies the form of equilibration that was done.
  213: *>       = 'N':  No equilibration (always true if FACT = 'N').
  214: *>       = 'Y':  Both row and column equilibration, i.e., A has been
  215: *>               replaced by diag(S) * A * diag(S).
  216: *>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
  217: *>     output argument.
  218: *> \endverbatim
  219: *>
  220: *> \param[in,out] S
  221: *> \verbatim
  222: *>          S is DOUBLE PRECISION array, dimension (N)
  223: *>     The row scale factors for A.  If EQUED = 'Y', A is multiplied on
  224: *>     the left and right by diag(S).  S is an input argument if FACT =
  225: *>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
  226: *>     = 'Y', each element of S must be positive.  If S is output, each
  227: *>     element of S is a power of the radix. If S is input, each element
  228: *>     of S should be a power of the radix to ensure a reliable solution
  229: *>     and error estimates. Scaling by powers of the radix does not cause
  230: *>     rounding errors unless the result underflows or overflows.
  231: *>     Rounding errors during scaling lead to refining with a matrix that
  232: *>     is not equivalent to the input matrix, producing error estimates
  233: *>     that may not be reliable.
  234: *> \endverbatim
  235: *>
  236: *> \param[in,out] B
  237: *> \verbatim
  238: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  239: *>     On entry, the N-by-NRHS right hand side matrix B.
  240: *>     On exit,
  241: *>     if EQUED = 'N', B is not modified;
  242: *>     if EQUED = 'Y', B is overwritten by diag(S)*B;
  243: *> \endverbatim
  244: *>
  245: *> \param[in] LDB
  246: *> \verbatim
  247: *>          LDB is INTEGER
  248: *>     The leading dimension of the array B.  LDB >= max(1,N).
  249: *> \endverbatim
  250: *>
  251: *> \param[out] X
  252: *> \verbatim
  253: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  254: *>     If INFO = 0, the N-by-NRHS solution matrix X to the original
  255: *>     system of equations.  Note that A and B are modified on exit if
  256: *>     EQUED .ne. 'N', and the solution to the equilibrated system is
  257: *>     inv(diag(S))*X.
  258: *> \endverbatim
  259: *>
  260: *> \param[in] LDX
  261: *> \verbatim
  262: *>          LDX is INTEGER
  263: *>     The leading dimension of the array X.  LDX >= max(1,N).
  264: *> \endverbatim
  265: *>
  266: *> \param[out] RCOND
  267: *> \verbatim
  268: *>          RCOND is DOUBLE PRECISION
  269: *>     Reciprocal scaled condition number.  This is an estimate of the
  270: *>     reciprocal Skeel condition number of the matrix A after
  271: *>     equilibration (if done).  If this is less than the machine
  272: *>     precision (in particular, if it is zero), the matrix is singular
  273: *>     to working precision.  Note that the error may still be small even
  274: *>     if this number is very small and the matrix appears ill-
  275: *>     conditioned.
  276: *> \endverbatim
  277: *>
  278: *> \param[out] RPVGRW
  279: *> \verbatim
  280: *>          RPVGRW is DOUBLE PRECISION
  281: *>     Reciprocal pivot growth.  On exit, this contains the reciprocal
  282: *>     pivot growth factor norm(A)/norm(U). The "max absolute element"
  283: *>     norm is used.  If this is much less than 1, then the stability of
  284: *>     the LU factorization of the (equilibrated) matrix A could be poor.
  285: *>     This also means that the solution X, estimated condition numbers,
  286: *>     and error bounds could be unreliable. If factorization fails with
  287: *>     0<INFO<=N, then this contains the reciprocal pivot growth factor
  288: *>     for the leading INFO columns of A.
  289: *> \endverbatim
  290: *>
  291: *> \param[out] BERR
  292: *> \verbatim
  293: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  294: *>     Componentwise relative backward error.  This is the
  295: *>     componentwise relative backward error of each solution vector X(j)
  296: *>     (i.e., the smallest relative change in any element of A or B that
  297: *>     makes X(j) an exact solution).
  298: *> \endverbatim
  299: *>
  300: *> \param[in] N_ERR_BNDS
  301: *> \verbatim
  302: *>          N_ERR_BNDS is INTEGER
  303: *>     Number of error bounds to return for each right hand side
  304: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
  305: *>     ERR_BNDS_COMP below.
  306: *> \endverbatim
  307: *>
  308: *> \param[out] ERR_BNDS_NORM
  309: *> \verbatim
  310: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  311: *>     For each right-hand side, this array contains information about
  312: *>     various error bounds and condition numbers corresponding to the
  313: *>     normwise relative error, which is defined as follows:
  314: *>
  315: *>     Normwise relative error in the ith solution vector:
  316: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  317: *>            ------------------------------
  318: *>                  max_j abs(X(j,i))
  319: *>
  320: *>     The array is indexed by the type of error information as described
  321: *>     below. There currently are up to three pieces of information
  322: *>     returned.
  323: *>
  324: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  325: *>     right-hand side.
  326: *>
  327: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  328: *>     three fields:
  329: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  330: *>              reciprocal condition number is less than the threshold
  331: *>              sqrt(n) * dlamch('Epsilon').
  332: *>
  333: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  334: *>              almost certainly within a factor of 10 of the true error
  335: *>              so long as the next entry is greater than the threshold
  336: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  337: *>              be trusted if the previous boolean is true.
  338: *>
  339: *>     err = 3  Reciprocal condition number: Estimated normwise
  340: *>              reciprocal condition number.  Compared with the threshold
  341: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  342: *>              estimate is "guaranteed". These reciprocal condition
  343: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  344: *>              appropriately scaled matrix Z.
  345: *>              Let Z = S*A, where S scales each row by a power of the
  346: *>              radix so all absolute row sums of Z are approximately 1.
  347: *>
  348: *>     See Lapack Working Note 165 for further details and extra
  349: *>     cautions.
  350: *> \endverbatim
  351: *>
  352: *> \param[out] ERR_BNDS_COMP
  353: *> \verbatim
  354: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  355: *>     For each right-hand side, this array contains information about
  356: *>     various error bounds and condition numbers corresponding to the
  357: *>     componentwise relative error, which is defined as follows:
  358: *>
  359: *>     Componentwise relative error in the ith solution vector:
  360: *>                    abs(XTRUE(j,i) - X(j,i))
  361: *>             max_j ----------------------
  362: *>                         abs(X(j,i))
  363: *>
  364: *>     The array is indexed by the right-hand side i (on which the
  365: *>     componentwise relative error depends), and the type of error
  366: *>     information as described below. There currently are up to three
  367: *>     pieces of information returned for each right-hand side. If
  368: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  369: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  370: *>     the first (:,N_ERR_BNDS) entries are returned.
  371: *>
  372: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  373: *>     right-hand side.
  374: *>
  375: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  376: *>     three fields:
  377: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  378: *>              reciprocal condition number is less than the threshold
  379: *>              sqrt(n) * dlamch('Epsilon').
  380: *>
  381: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  382: *>              almost certainly within a factor of 10 of the true error
  383: *>              so long as the next entry is greater than the threshold
  384: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  385: *>              be trusted if the previous boolean is true.
  386: *>
  387: *>     err = 3  Reciprocal condition number: Estimated componentwise
  388: *>              reciprocal condition number.  Compared with the threshold
  389: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  390: *>              estimate is "guaranteed". These reciprocal condition
  391: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  392: *>              appropriately scaled matrix Z.
  393: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  394: *>              current right-hand side and S scales each row of
  395: *>              A*diag(x) by a power of the radix so all absolute row
  396: *>              sums of Z are approximately 1.
  397: *>
  398: *>     See Lapack Working Note 165 for further details and extra
  399: *>     cautions.
  400: *> \endverbatim
  401: *>
  402: *> \param[in] NPARAMS
  403: *> \verbatim
  404: *>          NPARAMS is INTEGER
  405: *>     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
  406: *>     PARAMS array is never referenced and default values are used.
  407: *> \endverbatim
  408: *>
  409: *> \param[in,out] PARAMS
  410: *> \verbatim
  411: *>          PARAMS is DOUBLE PRECISION array, dimension NPARAMS
  412: *>     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
  413: *>     that entry will be filled with default value used for that
  414: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
  415: *>     are used for higher-numbered parameters.
  416: *>
  417: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  418: *>            refinement or not.
  419: *>         Default: 1.0D+0
  420: *>            = 0.0 : No refinement is performed, and no error bounds are
  421: *>                    computed.
  422: *>            = 1.0 : Use the extra-precise refinement algorithm.
  423: *>              (other values are reserved for future use)
  424: *>
  425: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  426: *>            computations allowed for refinement.
  427: *>         Default: 10
  428: *>         Aggressive: Set to 100 to permit convergence using approximate
  429: *>                     factorizations or factorizations other than LU. If
  430: *>                     the factorization uses a technique other than
  431: *>                     Gaussian elimination, the guarantees in
  432: *>                     err_bnds_norm and err_bnds_comp may no longer be
  433: *>                     trustworthy.
  434: *>
  435: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  436: *>            will attempt to find a solution with small componentwise
  437: *>            relative error in the double-precision algorithm.  Positive
  438: *>            is true, 0.0 is false.
  439: *>         Default: 1.0 (attempt componentwise convergence)
  440: *> \endverbatim
  441: *>
  442: *> \param[out] WORK
  443: *> \verbatim
  444: *>          WORK is DOUBLE PRECISION array, dimension (4*N)
  445: *> \endverbatim
  446: *>
  447: *> \param[out] IWORK
  448: *> \verbatim
  449: *>          IWORK is INTEGER array, dimension (N)
  450: *> \endverbatim
  451: *>
  452: *> \param[out] INFO
  453: *> \verbatim
  454: *>          INFO is INTEGER
  455: *>       = 0:  Successful exit. The solution to every right-hand side is
  456: *>         guaranteed.
  457: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
  458: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
  459: *>         has been completed, but the factor U is exactly singular, so
  460: *>         the solution and error bounds could not be computed. RCOND = 0
  461: *>         is returned.
  462: *>       = N+J: The solution corresponding to the Jth right-hand side is
  463: *>         not guaranteed. The solutions corresponding to other right-
  464: *>         hand sides K with K > J may not be guaranteed as well, but
  465: *>         only the first such right-hand side is reported. If a small
  466: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
  467: *>         the Jth right-hand side is the first with a normwise error
  468: *>         bound that is not guaranteed (the smallest J such
  469: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  470: *>         the Jth right-hand side is the first with either a normwise or
  471: *>         componentwise error bound that is not guaranteed (the smallest
  472: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  473: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  474: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  475: *>         about all of the right-hand sides check ERR_BNDS_NORM or
  476: *>         ERR_BNDS_COMP.
  477: *> \endverbatim
  478: *
  479: *  Authors:
  480: *  ========
  481: *
  482: *> \author Univ. of Tennessee 
  483: *> \author Univ. of California Berkeley 
  484: *> \author Univ. of Colorado Denver 
  485: *> \author NAG Ltd. 
  486: *
  487: *> \date April 2012
  488: *
  489: *> \ingroup doublePOsolve
  490: *
  491: *  =====================================================================
  492:       SUBROUTINE DPOSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
  493:      $                    S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
  494:      $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
  495:      $                    NPARAMS, PARAMS, WORK, IWORK, INFO )
  496: *
  497: *  -- LAPACK driver routine (version 3.4.1) --
  498: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  499: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  500: *     April 2012
  501: *
  502: *     .. Scalar Arguments ..
  503:       CHARACTER          EQUED, FACT, UPLO
  504:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
  505:      $                   N_ERR_BNDS
  506:       DOUBLE PRECISION   RCOND, RPVGRW
  507: *     ..
  508: *     .. Array Arguments ..
  509:       INTEGER            IWORK( * )
  510:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  511:      $                   X( LDX, * ), WORK( * )
  512:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
  513:      $                   ERR_BNDS_NORM( NRHS, * ),
  514:      $                   ERR_BNDS_COMP( NRHS, * )
  515: *     ..
  516: *
  517: *  ==================================================================
  518: *
  519: *     .. Parameters ..
  520:       DOUBLE PRECISION   ZERO, ONE
  521:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  522:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  523:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  524:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  525:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  526:      $                   BERR_I = 3 )
  527:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  528:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  529:      $                   PIV_GROWTH_I = 9 )
  530: *     ..
  531: *     .. Local Scalars ..
  532:       LOGICAL            EQUIL, NOFACT, RCEQU
  533:       INTEGER            INFEQU, J
  534:       DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX,
  535:      $                   SCOND, SMLNUM
  536: *     ..
  537: *     .. External Functions ..
  538:       EXTERNAL           LSAME, DLAMCH, DLA_PORPVGRW
  539:       LOGICAL            LSAME
  540:       DOUBLE PRECISION   DLAMCH, DLA_PORPVGRW
  541: *     ..
  542: *     .. External Subroutines ..
  543:       EXTERNAL           DPOEQUB, DPOTRF, DPOTRS, DLACPY, DLAQSY,
  544:      $                   XERBLA, DLASCL2, DPORFSX
  545: *     ..
  546: *     .. Intrinsic Functions ..
  547:       INTRINSIC          MAX, MIN
  548: *     ..
  549: *     .. Executable Statements ..
  550: *
  551:       INFO = 0
  552:       NOFACT = LSAME( FACT, 'N' )
  553:       EQUIL = LSAME( FACT, 'E' )
  554:       SMLNUM = DLAMCH( 'Safe minimum' )
  555:       BIGNUM = ONE / SMLNUM
  556:       IF( NOFACT .OR. EQUIL ) THEN
  557:          EQUED = 'N'
  558:          RCEQU = .FALSE.
  559:       ELSE
  560:          RCEQU = LSAME( EQUED, 'Y' )
  561:       ENDIF
  562: *
  563: *     Default is failure.  If an input parameter is wrong or
  564: *     factorization fails, make everything look horrible.  Only the
  565: *     pivot growth is set here, the rest is initialized in DPORFSX.
  566: *
  567:       RPVGRW = ZERO
  568: *
  569: *     Test the input parameters.  PARAMS is not tested until DPORFSX.
  570: *
  571:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
  572:      $     LSAME( FACT, 'F' ) ) THEN
  573:          INFO = -1
  574:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND.
  575:      $         .NOT.LSAME( UPLO, 'L' ) ) THEN
  576:          INFO = -2
  577:       ELSE IF( N.LT.0 ) THEN
  578:          INFO = -3
  579:       ELSE IF( NRHS.LT.0 ) THEN
  580:          INFO = -4
  581:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  582:          INFO = -6
  583:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  584:          INFO = -8
  585:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  586:      $        ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  587:          INFO = -9
  588:       ELSE
  589:          IF ( RCEQU ) THEN
  590:             SMIN = BIGNUM
  591:             SMAX = ZERO
  592:             DO 10 J = 1, N
  593:                SMIN = MIN( SMIN, S( J ) )
  594:                SMAX = MAX( SMAX, S( J ) )
  595:  10         CONTINUE
  596:             IF( SMIN.LE.ZERO ) THEN
  597:                INFO = -10
  598:             ELSE IF( N.GT.0 ) THEN
  599:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  600:             ELSE
  601:                SCOND = ONE
  602:             END IF
  603:          END IF
  604:          IF( INFO.EQ.0 ) THEN
  605:             IF( LDB.LT.MAX( 1, N ) ) THEN
  606:                INFO = -12
  607:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  608:                INFO = -14
  609:             END IF
  610:          END IF
  611:       END IF
  612: *
  613:       IF( INFO.NE.0 ) THEN
  614:          CALL XERBLA( 'DPOSVXX', -INFO )
  615:          RETURN
  616:       END IF
  617: *
  618:       IF( EQUIL ) THEN
  619: *
  620: *     Compute row and column scalings to equilibrate the matrix A.
  621: *
  622:          CALL DPOEQUB( N, A, LDA, S, SCOND, AMAX, INFEQU )
  623:          IF( INFEQU.EQ.0 ) THEN
  624: *
  625: *     Equilibrate the matrix.
  626: *
  627:             CALL DLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
  628:             RCEQU = LSAME( EQUED, 'Y' )
  629:          END IF
  630:       END IF
  631: *
  632: *     Scale the right-hand side.
  633: *
  634:       IF( RCEQU ) CALL DLASCL2( N, NRHS, S, B, LDB )
  635: *
  636:       IF( NOFACT .OR. EQUIL ) THEN
  637: *
  638: *        Compute the Cholesky factorization of A.
  639: *
  640:          CALL DLACPY( UPLO, N, N, A, LDA, AF, LDAF )
  641:          CALL DPOTRF( UPLO, N, AF, LDAF, INFO )
  642: *
  643: *        Return if INFO is non-zero.
  644: *
  645:          IF( INFO.NE.0 ) THEN
  646: *
  647: *           Pivot in column INFO is exactly 0
  648: *           Compute the reciprocal pivot growth factor of the
  649: *           leading rank-deficient INFO columns of A.
  650: *
  651:             RPVGRW = DLA_PORPVGRW( UPLO, INFO, A, LDA, AF, LDAF, WORK )
  652:             RETURN
  653:          ENDIF
  654:       END IF
  655: *
  656: *     Compute the reciprocal growth factor RPVGRW.
  657: *
  658:       RPVGRW = DLA_PORPVGRW( UPLO, N, A, LDA, AF, LDAF, WORK )
  659: *
  660: *     Compute the solution matrix X.
  661: *
  662:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  663:       CALL DPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
  664: *
  665: *     Use iterative refinement to improve the computed solution and
  666: *     compute error bounds and backward error estimates for it.
  667: *
  668:       CALL DPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF,
  669:      $     S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
  670:      $     ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO )
  671: 
  672: *
  673: *     Scale solutions.
  674: *
  675:       IF ( RCEQU ) THEN
  676:          CALL DLASCL2 ( N, NRHS, S, X, LDX )
  677:       END IF
  678: *
  679:       RETURN
  680: *
  681: *     End of DPOSVXX
  682: *
  683:       END

CVSweb interface <joel.bertrand@systella.fr>