File:  [local] / rpl / lapack / lapack / dposvx.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:09 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE DPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
    2:      $                   S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
    3:      $                   IWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.3.1) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *  -- April 2011                                                      --
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          EQUED, FACT, UPLO
   12:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
   13:       DOUBLE PRECISION   RCOND
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IWORK( * )
   17:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   18:      $                   BERR( * ), FERR( * ), S( * ), WORK( * ),
   19:      $                   X( LDX, * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  DPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
   26: *  compute the solution to a real system of linear equations
   27: *     A * X = B,
   28: *  where A is an N-by-N symmetric positive definite matrix and X and B
   29: *  are N-by-NRHS matrices.
   30: *
   31: *  Error bounds on the solution and a condition estimate are also
   32: *  provided.
   33: *
   34: *  Description
   35: *  ===========
   36: *
   37: *  The following steps are performed:
   38: *
   39: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
   40: *     the system:
   41: *        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
   42: *     Whether or not the system will be equilibrated depends on the
   43: *     scaling of the matrix A, but if equilibration is used, A is
   44: *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
   45: *
   46: *  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
   47: *     factor the matrix A (after equilibration if FACT = 'E') as
   48: *        A = U**T* U,  if UPLO = 'U', or
   49: *        A = L * L**T,  if UPLO = 'L',
   50: *     where U is an upper triangular matrix and L is a lower triangular
   51: *     matrix.
   52: *
   53: *  3. If the leading i-by-i principal minor is not positive definite,
   54: *     then the routine returns with INFO = i. Otherwise, the factored
   55: *     form of A is used to estimate the condition number of the matrix
   56: *     A.  If the reciprocal of the condition number is less than machine
   57: *     precision, INFO = N+1 is returned as a warning, but the routine
   58: *     still goes on to solve for X and compute error bounds as
   59: *     described below.
   60: *
   61: *  4. The system of equations is solved for X using the factored form
   62: *     of A.
   63: *
   64: *  5. Iterative refinement is applied to improve the computed solution
   65: *     matrix and calculate error bounds and backward error estimates
   66: *     for it.
   67: *
   68: *  6. If equilibration was used, the matrix X is premultiplied by
   69: *     diag(S) so that it solves the original system before
   70: *     equilibration.
   71: *
   72: *  Arguments
   73: *  =========
   74: *
   75: *  FACT    (input) CHARACTER*1
   76: *          Specifies whether or not the factored form of the matrix A is
   77: *          supplied on entry, and if not, whether the matrix A should be
   78: *          equilibrated before it is factored.
   79: *          = 'F':  On entry, AF contains the factored form of A.
   80: *                  If EQUED = 'Y', the matrix A has been equilibrated
   81: *                  with scaling factors given by S.  A and AF will not
   82: *                  be modified.
   83: *          = 'N':  The matrix A will be copied to AF and factored.
   84: *          = 'E':  The matrix A will be equilibrated if necessary, then
   85: *                  copied to AF and factored.
   86: *
   87: *  UPLO    (input) CHARACTER*1
   88: *          = 'U':  Upper triangle of A is stored;
   89: *          = 'L':  Lower triangle of A is stored.
   90: *
   91: *  N       (input) INTEGER
   92: *          The number of linear equations, i.e., the order of the
   93: *          matrix A.  N >= 0.
   94: *
   95: *  NRHS    (input) INTEGER
   96: *          The number of right hand sides, i.e., the number of columns
   97: *          of the matrices B and X.  NRHS >= 0.
   98: *
   99: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
  100: *          On entry, the symmetric matrix A, except if FACT = 'F' and
  101: *          EQUED = 'Y', then A must contain the equilibrated matrix
  102: *          diag(S)*A*diag(S).  If UPLO = 'U', the leading
  103: *          N-by-N upper triangular part of A contains the upper
  104: *          triangular part of the matrix A, and the strictly lower
  105: *          triangular part of A is not referenced.  If UPLO = 'L', the
  106: *          leading N-by-N lower triangular part of A contains the lower
  107: *          triangular part of the matrix A, and the strictly upper
  108: *          triangular part of A is not referenced.  A is not modified if
  109: *          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
  110: *
  111: *          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  112: *          diag(S)*A*diag(S).
  113: *
  114: *  LDA     (input) INTEGER
  115: *          The leading dimension of the array A.  LDA >= max(1,N).
  116: *
  117: *  AF      (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
  118: *          If FACT = 'F', then AF is an input argument and on entry
  119: *          contains the triangular factor U or L from the Cholesky
  120: *          factorization A = U**T*U or A = L*L**T, in the same storage
  121: *          format as A.  If EQUED .ne. 'N', then AF is the factored form
  122: *          of the equilibrated matrix diag(S)*A*diag(S).
  123: *
  124: *          If FACT = 'N', then AF is an output argument and on exit
  125: *          returns the triangular factor U or L from the Cholesky
  126: *          factorization A = U**T*U or A = L*L**T of the original
  127: *          matrix A.
  128: *
  129: *          If FACT = 'E', then AF is an output argument and on exit
  130: *          returns the triangular factor U or L from the Cholesky
  131: *          factorization A = U**T*U or A = L*L**T of the equilibrated
  132: *          matrix A (see the description of A for the form of the
  133: *          equilibrated matrix).
  134: *
  135: *  LDAF    (input) INTEGER
  136: *          The leading dimension of the array AF.  LDAF >= max(1,N).
  137: *
  138: *  EQUED   (input or output) CHARACTER*1
  139: *          Specifies the form of equilibration that was done.
  140: *          = 'N':  No equilibration (always true if FACT = 'N').
  141: *          = 'Y':  Equilibration was done, i.e., A has been replaced by
  142: *                  diag(S) * A * diag(S).
  143: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
  144: *          output argument.
  145: *
  146: *  S       (input or output) DOUBLE PRECISION array, dimension (N)
  147: *          The scale factors for A; not accessed if EQUED = 'N'.  S is
  148: *          an input argument if FACT = 'F'; otherwise, S is an output
  149: *          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
  150: *          must be positive.
  151: *
  152: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
  153: *          On entry, the N-by-NRHS right hand side matrix B.
  154: *          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
  155: *          B is overwritten by diag(S) * B.
  156: *
  157: *  LDB     (input) INTEGER
  158: *          The leading dimension of the array B.  LDB >= max(1,N).
  159: *
  160: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
  161: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
  162: *          the original system of equations.  Note that if EQUED = 'Y',
  163: *          A and B are modified on exit, and the solution to the
  164: *          equilibrated system is inv(diag(S))*X.
  165: *
  166: *  LDX     (input) INTEGER
  167: *          The leading dimension of the array X.  LDX >= max(1,N).
  168: *
  169: *  RCOND   (output) DOUBLE PRECISION
  170: *          The estimate of the reciprocal condition number of the matrix
  171: *          A after equilibration (if done).  If RCOND is less than the
  172: *          machine precision (in particular, if RCOND = 0), the matrix
  173: *          is singular to working precision.  This condition is
  174: *          indicated by a return code of INFO > 0.
  175: *
  176: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  177: *          The estimated forward error bound for each solution vector
  178: *          X(j) (the j-th column of the solution matrix X).
  179: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
  180: *          is an estimated upper bound for the magnitude of the largest
  181: *          element in (X(j) - XTRUE) divided by the magnitude of the
  182: *          largest element in X(j).  The estimate is as reliable as
  183: *          the estimate for RCOND, and is almost always a slight
  184: *          overestimate of the true error.
  185: *
  186: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  187: *          The componentwise relative backward error of each solution
  188: *          vector X(j) (i.e., the smallest relative change in
  189: *          any element of A or B that makes X(j) an exact solution).
  190: *
  191: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
  192: *
  193: *  IWORK   (workspace) INTEGER array, dimension (N)
  194: *
  195: *  INFO    (output) INTEGER
  196: *          = 0: successful exit
  197: *          < 0: if INFO = -i, the i-th argument had an illegal value
  198: *          > 0: if INFO = i, and i is
  199: *                <= N:  the leading minor of order i of A is
  200: *                       not positive definite, so the factorization
  201: *                       could not be completed, and the solution has not
  202: *                       been computed. RCOND = 0 is returned.
  203: *                = N+1: U is nonsingular, but RCOND is less than machine
  204: *                       precision, meaning that the matrix is singular
  205: *                       to working precision.  Nevertheless, the
  206: *                       solution and error bounds are computed because
  207: *                       there are a number of situations where the
  208: *                       computed solution can be more accurate than the
  209: *                       value of RCOND would suggest.
  210: *
  211: *  =====================================================================
  212: *
  213: *     .. Parameters ..
  214:       DOUBLE PRECISION   ZERO, ONE
  215:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  216: *     ..
  217: *     .. Local Scalars ..
  218:       LOGICAL            EQUIL, NOFACT, RCEQU
  219:       INTEGER            I, INFEQU, J
  220:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
  221: *     ..
  222: *     .. External Functions ..
  223:       LOGICAL            LSAME
  224:       DOUBLE PRECISION   DLAMCH, DLANSY
  225:       EXTERNAL           LSAME, DLAMCH, DLANSY
  226: *     ..
  227: *     .. External Subroutines ..
  228:       EXTERNAL           DLACPY, DLAQSY, DPOCON, DPOEQU, DPORFS, DPOTRF,
  229:      $                   DPOTRS, XERBLA
  230: *     ..
  231: *     .. Intrinsic Functions ..
  232:       INTRINSIC          MAX, MIN
  233: *     ..
  234: *     .. Executable Statements ..
  235: *
  236:       INFO = 0
  237:       NOFACT = LSAME( FACT, 'N' )
  238:       EQUIL = LSAME( FACT, 'E' )
  239:       IF( NOFACT .OR. EQUIL ) THEN
  240:          EQUED = 'N'
  241:          RCEQU = .FALSE.
  242:       ELSE
  243:          RCEQU = LSAME( EQUED, 'Y' )
  244:          SMLNUM = DLAMCH( 'Safe minimum' )
  245:          BIGNUM = ONE / SMLNUM
  246:       END IF
  247: *
  248: *     Test the input parameters.
  249: *
  250:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  251:      $     THEN
  252:          INFO = -1
  253:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
  254:      $          THEN
  255:          INFO = -2
  256:       ELSE IF( N.LT.0 ) THEN
  257:          INFO = -3
  258:       ELSE IF( NRHS.LT.0 ) THEN
  259:          INFO = -4
  260:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  261:          INFO = -6
  262:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  263:          INFO = -8
  264:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  265:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  266:          INFO = -9
  267:       ELSE
  268:          IF( RCEQU ) THEN
  269:             SMIN = BIGNUM
  270:             SMAX = ZERO
  271:             DO 10 J = 1, N
  272:                SMIN = MIN( SMIN, S( J ) )
  273:                SMAX = MAX( SMAX, S( J ) )
  274:    10       CONTINUE
  275:             IF( SMIN.LE.ZERO ) THEN
  276:                INFO = -10
  277:             ELSE IF( N.GT.0 ) THEN
  278:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  279:             ELSE
  280:                SCOND = ONE
  281:             END IF
  282:          END IF
  283:          IF( INFO.EQ.0 ) THEN
  284:             IF( LDB.LT.MAX( 1, N ) ) THEN
  285:                INFO = -12
  286:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  287:                INFO = -14
  288:             END IF
  289:          END IF
  290:       END IF
  291: *
  292:       IF( INFO.NE.0 ) THEN
  293:          CALL XERBLA( 'DPOSVX', -INFO )
  294:          RETURN
  295:       END IF
  296: *
  297:       IF( EQUIL ) THEN
  298: *
  299: *        Compute row and column scalings to equilibrate the matrix A.
  300: *
  301:          CALL DPOEQU( N, A, LDA, S, SCOND, AMAX, INFEQU )
  302:          IF( INFEQU.EQ.0 ) THEN
  303: *
  304: *           Equilibrate the matrix.
  305: *
  306:             CALL DLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
  307:             RCEQU = LSAME( EQUED, 'Y' )
  308:          END IF
  309:       END IF
  310: *
  311: *     Scale the right hand side.
  312: *
  313:       IF( RCEQU ) THEN
  314:          DO 30 J = 1, NRHS
  315:             DO 20 I = 1, N
  316:                B( I, J ) = S( I )*B( I, J )
  317:    20       CONTINUE
  318:    30    CONTINUE
  319:       END IF
  320: *
  321:       IF( NOFACT .OR. EQUIL ) THEN
  322: *
  323: *        Compute the Cholesky factorization A = U**T *U or A = L*L**T.
  324: *
  325:          CALL DLACPY( UPLO, N, N, A, LDA, AF, LDAF )
  326:          CALL DPOTRF( UPLO, N, AF, LDAF, INFO )
  327: *
  328: *        Return if INFO is non-zero.
  329: *
  330:          IF( INFO.GT.0 )THEN
  331:             RCOND = ZERO
  332:             RETURN
  333:          END IF
  334:       END IF
  335: *
  336: *     Compute the norm of the matrix A.
  337: *
  338:       ANORM = DLANSY( '1', UPLO, N, A, LDA, WORK )
  339: *
  340: *     Compute the reciprocal of the condition number of A.
  341: *
  342:       CALL DPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
  343: *
  344: *     Compute the solution matrix X.
  345: *
  346:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  347:       CALL DPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
  348: *
  349: *     Use iterative refinement to improve the computed solution and
  350: *     compute error bounds and backward error estimates for it.
  351: *
  352:       CALL DPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
  353:      $             FERR, BERR, WORK, IWORK, INFO )
  354: *
  355: *     Transform the solution matrix X to a solution of the original
  356: *     system.
  357: *
  358:       IF( RCEQU ) THEN
  359:          DO 50 J = 1, NRHS
  360:             DO 40 I = 1, N
  361:                X( I, J ) = S( I )*X( I, J )
  362:    40       CONTINUE
  363:    50    CONTINUE
  364:          DO 60 J = 1, NRHS
  365:             FERR( J ) = FERR( J ) / SCOND
  366:    60    CONTINUE
  367:       END IF
  368: *
  369: *     Set INFO = N+1 if the matrix is singular to working precision.
  370: *
  371:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  372:      $   INFO = N + 1
  373: *
  374:       RETURN
  375: *
  376: *     End of DPOSVX
  377: *
  378:       END

CVSweb interface <joel.bertrand@systella.fr>