File:  [local] / rpl / lapack / lapack / dposvx.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:38 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief <b> DPOSVX computes the solution to system of linear equations A * X = B for PO matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DPOSVX + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dposvx.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dposvx.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dposvx.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
   22: *                          S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
   23: *                          IWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          EQUED, FACT, UPLO
   27: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
   28: *       DOUBLE PRECISION   RCOND
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IWORK( * )
   32: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   33: *      $                   BERR( * ), FERR( * ), S( * ), WORK( * ),
   34: *      $                   X( LDX, * )
   35: *       ..
   36: *  
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> DPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
   44: *> compute the solution to a real system of linear equations
   45: *>    A * X = B,
   46: *> where A is an N-by-N symmetric positive definite matrix and X and B
   47: *> are N-by-NRHS matrices.
   48: *>
   49: *> Error bounds on the solution and a condition estimate are also
   50: *> provided.
   51: *> \endverbatim
   52: *
   53: *> \par Description:
   54: *  =================
   55: *>
   56: *> \verbatim
   57: *>
   58: *> The following steps are performed:
   59: *>
   60: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
   61: *>    the system:
   62: *>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
   63: *>    Whether or not the system will be equilibrated depends on the
   64: *>    scaling of the matrix A, but if equilibration is used, A is
   65: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
   66: *>
   67: *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
   68: *>    factor the matrix A (after equilibration if FACT = 'E') as
   69: *>       A = U**T* U,  if UPLO = 'U', or
   70: *>       A = L * L**T,  if UPLO = 'L',
   71: *>    where U is an upper triangular matrix and L is a lower triangular
   72: *>    matrix.
   73: *>
   74: *> 3. If the leading i-by-i principal minor is not positive definite,
   75: *>    then the routine returns with INFO = i. Otherwise, the factored
   76: *>    form of A is used to estimate the condition number of the matrix
   77: *>    A.  If the reciprocal of the condition number is less than machine
   78: *>    precision, INFO = N+1 is returned as a warning, but the routine
   79: *>    still goes on to solve for X and compute error bounds as
   80: *>    described below.
   81: *>
   82: *> 4. The system of equations is solved for X using the factored form
   83: *>    of A.
   84: *>
   85: *> 5. Iterative refinement is applied to improve the computed solution
   86: *>    matrix and calculate error bounds and backward error estimates
   87: *>    for it.
   88: *>
   89: *> 6. If equilibration was used, the matrix X is premultiplied by
   90: *>    diag(S) so that it solves the original system before
   91: *>    equilibration.
   92: *> \endverbatim
   93: *
   94: *  Arguments:
   95: *  ==========
   96: *
   97: *> \param[in] FACT
   98: *> \verbatim
   99: *>          FACT is CHARACTER*1
  100: *>          Specifies whether or not the factored form of the matrix A is
  101: *>          supplied on entry, and if not, whether the matrix A should be
  102: *>          equilibrated before it is factored.
  103: *>          = 'F':  On entry, AF contains the factored form of A.
  104: *>                  If EQUED = 'Y', the matrix A has been equilibrated
  105: *>                  with scaling factors given by S.  A and AF will not
  106: *>                  be modified.
  107: *>          = 'N':  The matrix A will be copied to AF and factored.
  108: *>          = 'E':  The matrix A will be equilibrated if necessary, then
  109: *>                  copied to AF and factored.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] UPLO
  113: *> \verbatim
  114: *>          UPLO is CHARACTER*1
  115: *>          = 'U':  Upper triangle of A is stored;
  116: *>          = 'L':  Lower triangle of A is stored.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] N
  120: *> \verbatim
  121: *>          N is INTEGER
  122: *>          The number of linear equations, i.e., the order of the
  123: *>          matrix A.  N >= 0.
  124: *> \endverbatim
  125: *>
  126: *> \param[in] NRHS
  127: *> \verbatim
  128: *>          NRHS is INTEGER
  129: *>          The number of right hand sides, i.e., the number of columns
  130: *>          of the matrices B and X.  NRHS >= 0.
  131: *> \endverbatim
  132: *>
  133: *> \param[in,out] A
  134: *> \verbatim
  135: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  136: *>          On entry, the symmetric matrix A, except if FACT = 'F' and
  137: *>          EQUED = 'Y', then A must contain the equilibrated matrix
  138: *>          diag(S)*A*diag(S).  If UPLO = 'U', the leading
  139: *>          N-by-N upper triangular part of A contains the upper
  140: *>          triangular part of the matrix A, and the strictly lower
  141: *>          triangular part of A is not referenced.  If UPLO = 'L', the
  142: *>          leading N-by-N lower triangular part of A contains the lower
  143: *>          triangular part of the matrix A, and the strictly upper
  144: *>          triangular part of A is not referenced.  A is not modified if
  145: *>          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
  146: *>
  147: *>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  148: *>          diag(S)*A*diag(S).
  149: *> \endverbatim
  150: *>
  151: *> \param[in] LDA
  152: *> \verbatim
  153: *>          LDA is INTEGER
  154: *>          The leading dimension of the array A.  LDA >= max(1,N).
  155: *> \endverbatim
  156: *>
  157: *> \param[in,out] AF
  158: *> \verbatim
  159: *>          AF is or output) DOUBLE PRECISION array, dimension (LDAF,N)
  160: *>          If FACT = 'F', then AF is an input argument and on entry
  161: *>          contains the triangular factor U or L from the Cholesky
  162: *>          factorization A = U**T*U or A = L*L**T, in the same storage
  163: *>          format as A.  If EQUED .ne. 'N', then AF is the factored form
  164: *>          of the equilibrated matrix diag(S)*A*diag(S).
  165: *>
  166: *>          If FACT = 'N', then AF is an output argument and on exit
  167: *>          returns the triangular factor U or L from the Cholesky
  168: *>          factorization A = U**T*U or A = L*L**T of the original
  169: *>          matrix A.
  170: *>
  171: *>          If FACT = 'E', then AF is an output argument and on exit
  172: *>          returns the triangular factor U or L from the Cholesky
  173: *>          factorization A = U**T*U or A = L*L**T of the equilibrated
  174: *>          matrix A (see the description of A for the form of the
  175: *>          equilibrated matrix).
  176: *> \endverbatim
  177: *>
  178: *> \param[in] LDAF
  179: *> \verbatim
  180: *>          LDAF is INTEGER
  181: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
  182: *> \endverbatim
  183: *>
  184: *> \param[in,out] EQUED
  185: *> \verbatim
  186: *>          EQUED is or output) CHARACTER*1
  187: *>          Specifies the form of equilibration that was done.
  188: *>          = 'N':  No equilibration (always true if FACT = 'N').
  189: *>          = 'Y':  Equilibration was done, i.e., A has been replaced by
  190: *>                  diag(S) * A * diag(S).
  191: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
  192: *>          output argument.
  193: *> \endverbatim
  194: *>
  195: *> \param[in,out] S
  196: *> \verbatim
  197: *>          S is or output) DOUBLE PRECISION array, dimension (N)
  198: *>          The scale factors for A; not accessed if EQUED = 'N'.  S is
  199: *>          an input argument if FACT = 'F'; otherwise, S is an output
  200: *>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
  201: *>          must be positive.
  202: *> \endverbatim
  203: *>
  204: *> \param[in,out] B
  205: *> \verbatim
  206: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  207: *>          On entry, the N-by-NRHS right hand side matrix B.
  208: *>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
  209: *>          B is overwritten by diag(S) * B.
  210: *> \endverbatim
  211: *>
  212: *> \param[in] LDB
  213: *> \verbatim
  214: *>          LDB is INTEGER
  215: *>          The leading dimension of the array B.  LDB >= max(1,N).
  216: *> \endverbatim
  217: *>
  218: *> \param[out] X
  219: *> \verbatim
  220: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  221: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
  222: *>          the original system of equations.  Note that if EQUED = 'Y',
  223: *>          A and B are modified on exit, and the solution to the
  224: *>          equilibrated system is inv(diag(S))*X.
  225: *> \endverbatim
  226: *>
  227: *> \param[in] LDX
  228: *> \verbatim
  229: *>          LDX is INTEGER
  230: *>          The leading dimension of the array X.  LDX >= max(1,N).
  231: *> \endverbatim
  232: *>
  233: *> \param[out] RCOND
  234: *> \verbatim
  235: *>          RCOND is DOUBLE PRECISION
  236: *>          The estimate of the reciprocal condition number of the matrix
  237: *>          A after equilibration (if done).  If RCOND is less than the
  238: *>          machine precision (in particular, if RCOND = 0), the matrix
  239: *>          is singular to working precision.  This condition is
  240: *>          indicated by a return code of INFO > 0.
  241: *> \endverbatim
  242: *>
  243: *> \param[out] FERR
  244: *> \verbatim
  245: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  246: *>          The estimated forward error bound for each solution vector
  247: *>          X(j) (the j-th column of the solution matrix X).
  248: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  249: *>          is an estimated upper bound for the magnitude of the largest
  250: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  251: *>          largest element in X(j).  The estimate is as reliable as
  252: *>          the estimate for RCOND, and is almost always a slight
  253: *>          overestimate of the true error.
  254: *> \endverbatim
  255: *>
  256: *> \param[out] BERR
  257: *> \verbatim
  258: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  259: *>          The componentwise relative backward error of each solution
  260: *>          vector X(j) (i.e., the smallest relative change in
  261: *>          any element of A or B that makes X(j) an exact solution).
  262: *> \endverbatim
  263: *>
  264: *> \param[out] WORK
  265: *> \verbatim
  266: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
  267: *> \endverbatim
  268: *>
  269: *> \param[out] IWORK
  270: *> \verbatim
  271: *>          IWORK is INTEGER array, dimension (N)
  272: *> \endverbatim
  273: *>
  274: *> \param[out] INFO
  275: *> \verbatim
  276: *>          INFO is INTEGER
  277: *>          = 0: successful exit
  278: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  279: *>          > 0: if INFO = i, and i is
  280: *>                <= N:  the leading minor of order i of A is
  281: *>                       not positive definite, so the factorization
  282: *>                       could not be completed, and the solution has not
  283: *>                       been computed. RCOND = 0 is returned.
  284: *>                = N+1: U is nonsingular, but RCOND is less than machine
  285: *>                       precision, meaning that the matrix is singular
  286: *>                       to working precision.  Nevertheless, the
  287: *>                       solution and error bounds are computed because
  288: *>                       there are a number of situations where the
  289: *>                       computed solution can be more accurate than the
  290: *>                       value of RCOND would suggest.
  291: *> \endverbatim
  292: *
  293: *  Authors:
  294: *  ========
  295: *
  296: *> \author Univ. of Tennessee 
  297: *> \author Univ. of California Berkeley 
  298: *> \author Univ. of Colorado Denver 
  299: *> \author NAG Ltd. 
  300: *
  301: *> \date November 2011
  302: *
  303: *> \ingroup doublePOsolve
  304: *
  305: *  =====================================================================
  306:       SUBROUTINE DPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
  307:      $                   S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
  308:      $                   IWORK, INFO )
  309: *
  310: *  -- LAPACK driver routine (version 3.4.0) --
  311: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  312: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  313: *     November 2011
  314: *
  315: *     .. Scalar Arguments ..
  316:       CHARACTER          EQUED, FACT, UPLO
  317:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
  318:       DOUBLE PRECISION   RCOND
  319: *     ..
  320: *     .. Array Arguments ..
  321:       INTEGER            IWORK( * )
  322:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  323:      $                   BERR( * ), FERR( * ), S( * ), WORK( * ),
  324:      $                   X( LDX, * )
  325: *     ..
  326: *
  327: *  =====================================================================
  328: *
  329: *     .. Parameters ..
  330:       DOUBLE PRECISION   ZERO, ONE
  331:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  332: *     ..
  333: *     .. Local Scalars ..
  334:       LOGICAL            EQUIL, NOFACT, RCEQU
  335:       INTEGER            I, INFEQU, J
  336:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
  337: *     ..
  338: *     .. External Functions ..
  339:       LOGICAL            LSAME
  340:       DOUBLE PRECISION   DLAMCH, DLANSY
  341:       EXTERNAL           LSAME, DLAMCH, DLANSY
  342: *     ..
  343: *     .. External Subroutines ..
  344:       EXTERNAL           DLACPY, DLAQSY, DPOCON, DPOEQU, DPORFS, DPOTRF,
  345:      $                   DPOTRS, XERBLA
  346: *     ..
  347: *     .. Intrinsic Functions ..
  348:       INTRINSIC          MAX, MIN
  349: *     ..
  350: *     .. Executable Statements ..
  351: *
  352:       INFO = 0
  353:       NOFACT = LSAME( FACT, 'N' )
  354:       EQUIL = LSAME( FACT, 'E' )
  355:       IF( NOFACT .OR. EQUIL ) THEN
  356:          EQUED = 'N'
  357:          RCEQU = .FALSE.
  358:       ELSE
  359:          RCEQU = LSAME( EQUED, 'Y' )
  360:          SMLNUM = DLAMCH( 'Safe minimum' )
  361:          BIGNUM = ONE / SMLNUM
  362:       END IF
  363: *
  364: *     Test the input parameters.
  365: *
  366:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  367:      $     THEN
  368:          INFO = -1
  369:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
  370:      $          THEN
  371:          INFO = -2
  372:       ELSE IF( N.LT.0 ) THEN
  373:          INFO = -3
  374:       ELSE IF( NRHS.LT.0 ) THEN
  375:          INFO = -4
  376:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  377:          INFO = -6
  378:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  379:          INFO = -8
  380:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  381:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  382:          INFO = -9
  383:       ELSE
  384:          IF( RCEQU ) THEN
  385:             SMIN = BIGNUM
  386:             SMAX = ZERO
  387:             DO 10 J = 1, N
  388:                SMIN = MIN( SMIN, S( J ) )
  389:                SMAX = MAX( SMAX, S( J ) )
  390:    10       CONTINUE
  391:             IF( SMIN.LE.ZERO ) THEN
  392:                INFO = -10
  393:             ELSE IF( N.GT.0 ) THEN
  394:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  395:             ELSE
  396:                SCOND = ONE
  397:             END IF
  398:          END IF
  399:          IF( INFO.EQ.0 ) THEN
  400:             IF( LDB.LT.MAX( 1, N ) ) THEN
  401:                INFO = -12
  402:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  403:                INFO = -14
  404:             END IF
  405:          END IF
  406:       END IF
  407: *
  408:       IF( INFO.NE.0 ) THEN
  409:          CALL XERBLA( 'DPOSVX', -INFO )
  410:          RETURN
  411:       END IF
  412: *
  413:       IF( EQUIL ) THEN
  414: *
  415: *        Compute row and column scalings to equilibrate the matrix A.
  416: *
  417:          CALL DPOEQU( N, A, LDA, S, SCOND, AMAX, INFEQU )
  418:          IF( INFEQU.EQ.0 ) THEN
  419: *
  420: *           Equilibrate the matrix.
  421: *
  422:             CALL DLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
  423:             RCEQU = LSAME( EQUED, 'Y' )
  424:          END IF
  425:       END IF
  426: *
  427: *     Scale the right hand side.
  428: *
  429:       IF( RCEQU ) THEN
  430:          DO 30 J = 1, NRHS
  431:             DO 20 I = 1, N
  432:                B( I, J ) = S( I )*B( I, J )
  433:    20       CONTINUE
  434:    30    CONTINUE
  435:       END IF
  436: *
  437:       IF( NOFACT .OR. EQUIL ) THEN
  438: *
  439: *        Compute the Cholesky factorization A = U**T *U or A = L*L**T.
  440: *
  441:          CALL DLACPY( UPLO, N, N, A, LDA, AF, LDAF )
  442:          CALL DPOTRF( UPLO, N, AF, LDAF, INFO )
  443: *
  444: *        Return if INFO is non-zero.
  445: *
  446:          IF( INFO.GT.0 )THEN
  447:             RCOND = ZERO
  448:             RETURN
  449:          END IF
  450:       END IF
  451: *
  452: *     Compute the norm of the matrix A.
  453: *
  454:       ANORM = DLANSY( '1', UPLO, N, A, LDA, WORK )
  455: *
  456: *     Compute the reciprocal of the condition number of A.
  457: *
  458:       CALL DPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
  459: *
  460: *     Compute the solution matrix X.
  461: *
  462:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  463:       CALL DPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
  464: *
  465: *     Use iterative refinement to improve the computed solution and
  466: *     compute error bounds and backward error estimates for it.
  467: *
  468:       CALL DPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
  469:      $             FERR, BERR, WORK, IWORK, INFO )
  470: *
  471: *     Transform the solution matrix X to a solution of the original
  472: *     system.
  473: *
  474:       IF( RCEQU ) THEN
  475:          DO 50 J = 1, NRHS
  476:             DO 40 I = 1, N
  477:                X( I, J ) = S( I )*X( I, J )
  478:    40       CONTINUE
  479:    50    CONTINUE
  480:          DO 60 J = 1, NRHS
  481:             FERR( J ) = FERR( J ) / SCOND
  482:    60    CONTINUE
  483:       END IF
  484: *
  485: *     Set INFO = N+1 if the matrix is singular to working precision.
  486: *
  487:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  488:      $   INFO = N + 1
  489: *
  490:       RETURN
  491: *
  492: *     End of DPOSVX
  493: *
  494:       END

CVSweb interface <joel.bertrand@systella.fr>