Annotation of rpl/lapack/lapack/dposvx.f, revision 1.9

1.9     ! bertrand    1: *> \brief <b> DPOSVX computes the solution to system of linear equations A * X = B for PO matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DPOSVX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dposvx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dposvx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dposvx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
        !            22: *                          S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
        !            23: *                          IWORK, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          EQUED, FACT, UPLO
        !            27: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
        !            28: *       DOUBLE PRECISION   RCOND
        !            29: *       ..
        !            30: *       .. Array Arguments ..
        !            31: *       INTEGER            IWORK( * )
        !            32: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
        !            33: *      $                   BERR( * ), FERR( * ), S( * ), WORK( * ),
        !            34: *      $                   X( LDX, * )
        !            35: *       ..
        !            36: *  
        !            37: *
        !            38: *> \par Purpose:
        !            39: *  =============
        !            40: *>
        !            41: *> \verbatim
        !            42: *>
        !            43: *> DPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
        !            44: *> compute the solution to a real system of linear equations
        !            45: *>    A * X = B,
        !            46: *> where A is an N-by-N symmetric positive definite matrix and X and B
        !            47: *> are N-by-NRHS matrices.
        !            48: *>
        !            49: *> Error bounds on the solution and a condition estimate are also
        !            50: *> provided.
        !            51: *> \endverbatim
        !            52: *
        !            53: *> \par Description:
        !            54: *  =================
        !            55: *>
        !            56: *> \verbatim
        !            57: *>
        !            58: *> The following steps are performed:
        !            59: *>
        !            60: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
        !            61: *>    the system:
        !            62: *>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
        !            63: *>    Whether or not the system will be equilibrated depends on the
        !            64: *>    scaling of the matrix A, but if equilibration is used, A is
        !            65: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
        !            66: *>
        !            67: *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
        !            68: *>    factor the matrix A (after equilibration if FACT = 'E') as
        !            69: *>       A = U**T* U,  if UPLO = 'U', or
        !            70: *>       A = L * L**T,  if UPLO = 'L',
        !            71: *>    where U is an upper triangular matrix and L is a lower triangular
        !            72: *>    matrix.
        !            73: *>
        !            74: *> 3. If the leading i-by-i principal minor is not positive definite,
        !            75: *>    then the routine returns with INFO = i. Otherwise, the factored
        !            76: *>    form of A is used to estimate the condition number of the matrix
        !            77: *>    A.  If the reciprocal of the condition number is less than machine
        !            78: *>    precision, INFO = N+1 is returned as a warning, but the routine
        !            79: *>    still goes on to solve for X and compute error bounds as
        !            80: *>    described below.
        !            81: *>
        !            82: *> 4. The system of equations is solved for X using the factored form
        !            83: *>    of A.
        !            84: *>
        !            85: *> 5. Iterative refinement is applied to improve the computed solution
        !            86: *>    matrix and calculate error bounds and backward error estimates
        !            87: *>    for it.
        !            88: *>
        !            89: *> 6. If equilibration was used, the matrix X is premultiplied by
        !            90: *>    diag(S) so that it solves the original system before
        !            91: *>    equilibration.
        !            92: *> \endverbatim
        !            93: *
        !            94: *  Arguments:
        !            95: *  ==========
        !            96: *
        !            97: *> \param[in] FACT
        !            98: *> \verbatim
        !            99: *>          FACT is CHARACTER*1
        !           100: *>          Specifies whether or not the factored form of the matrix A is
        !           101: *>          supplied on entry, and if not, whether the matrix A should be
        !           102: *>          equilibrated before it is factored.
        !           103: *>          = 'F':  On entry, AF contains the factored form of A.
        !           104: *>                  If EQUED = 'Y', the matrix A has been equilibrated
        !           105: *>                  with scaling factors given by S.  A and AF will not
        !           106: *>                  be modified.
        !           107: *>          = 'N':  The matrix A will be copied to AF and factored.
        !           108: *>          = 'E':  The matrix A will be equilibrated if necessary, then
        !           109: *>                  copied to AF and factored.
        !           110: *> \endverbatim
        !           111: *>
        !           112: *> \param[in] UPLO
        !           113: *> \verbatim
        !           114: *>          UPLO is CHARACTER*1
        !           115: *>          = 'U':  Upper triangle of A is stored;
        !           116: *>          = 'L':  Lower triangle of A is stored.
        !           117: *> \endverbatim
        !           118: *>
        !           119: *> \param[in] N
        !           120: *> \verbatim
        !           121: *>          N is INTEGER
        !           122: *>          The number of linear equations, i.e., the order of the
        !           123: *>          matrix A.  N >= 0.
        !           124: *> \endverbatim
        !           125: *>
        !           126: *> \param[in] NRHS
        !           127: *> \verbatim
        !           128: *>          NRHS is INTEGER
        !           129: *>          The number of right hand sides, i.e., the number of columns
        !           130: *>          of the matrices B and X.  NRHS >= 0.
        !           131: *> \endverbatim
        !           132: *>
        !           133: *> \param[in,out] A
        !           134: *> \verbatim
        !           135: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !           136: *>          On entry, the symmetric matrix A, except if FACT = 'F' and
        !           137: *>          EQUED = 'Y', then A must contain the equilibrated matrix
        !           138: *>          diag(S)*A*diag(S).  If UPLO = 'U', the leading
        !           139: *>          N-by-N upper triangular part of A contains the upper
        !           140: *>          triangular part of the matrix A, and the strictly lower
        !           141: *>          triangular part of A is not referenced.  If UPLO = 'L', the
        !           142: *>          leading N-by-N lower triangular part of A contains the lower
        !           143: *>          triangular part of the matrix A, and the strictly upper
        !           144: *>          triangular part of A is not referenced.  A is not modified if
        !           145: *>          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
        !           146: *>
        !           147: *>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
        !           148: *>          diag(S)*A*diag(S).
        !           149: *> \endverbatim
        !           150: *>
        !           151: *> \param[in] LDA
        !           152: *> \verbatim
        !           153: *>          LDA is INTEGER
        !           154: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !           155: *> \endverbatim
        !           156: *>
        !           157: *> \param[in,out] AF
        !           158: *> \verbatim
        !           159: *>          AF is or output) DOUBLE PRECISION array, dimension (LDAF,N)
        !           160: *>          If FACT = 'F', then AF is an input argument and on entry
        !           161: *>          contains the triangular factor U or L from the Cholesky
        !           162: *>          factorization A = U**T*U or A = L*L**T, in the same storage
        !           163: *>          format as A.  If EQUED .ne. 'N', then AF is the factored form
        !           164: *>          of the equilibrated matrix diag(S)*A*diag(S).
        !           165: *>
        !           166: *>          If FACT = 'N', then AF is an output argument and on exit
        !           167: *>          returns the triangular factor U or L from the Cholesky
        !           168: *>          factorization A = U**T*U or A = L*L**T of the original
        !           169: *>          matrix A.
        !           170: *>
        !           171: *>          If FACT = 'E', then AF is an output argument and on exit
        !           172: *>          returns the triangular factor U or L from the Cholesky
        !           173: *>          factorization A = U**T*U or A = L*L**T of the equilibrated
        !           174: *>          matrix A (see the description of A for the form of the
        !           175: *>          equilibrated matrix).
        !           176: *> \endverbatim
        !           177: *>
        !           178: *> \param[in] LDAF
        !           179: *> \verbatim
        !           180: *>          LDAF is INTEGER
        !           181: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
        !           182: *> \endverbatim
        !           183: *>
        !           184: *> \param[in,out] EQUED
        !           185: *> \verbatim
        !           186: *>          EQUED is or output) CHARACTER*1
        !           187: *>          Specifies the form of equilibration that was done.
        !           188: *>          = 'N':  No equilibration (always true if FACT = 'N').
        !           189: *>          = 'Y':  Equilibration was done, i.e., A has been replaced by
        !           190: *>                  diag(S) * A * diag(S).
        !           191: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
        !           192: *>          output argument.
        !           193: *> \endverbatim
        !           194: *>
        !           195: *> \param[in,out] S
        !           196: *> \verbatim
        !           197: *>          S is or output) DOUBLE PRECISION array, dimension (N)
        !           198: *>          The scale factors for A; not accessed if EQUED = 'N'.  S is
        !           199: *>          an input argument if FACT = 'F'; otherwise, S is an output
        !           200: *>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
        !           201: *>          must be positive.
        !           202: *> \endverbatim
        !           203: *>
        !           204: *> \param[in,out] B
        !           205: *> \verbatim
        !           206: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           207: *>          On entry, the N-by-NRHS right hand side matrix B.
        !           208: *>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
        !           209: *>          B is overwritten by diag(S) * B.
        !           210: *> \endverbatim
        !           211: *>
        !           212: *> \param[in] LDB
        !           213: *> \verbatim
        !           214: *>          LDB is INTEGER
        !           215: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           216: *> \endverbatim
        !           217: *>
        !           218: *> \param[out] X
        !           219: *> \verbatim
        !           220: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
        !           221: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
        !           222: *>          the original system of equations.  Note that if EQUED = 'Y',
        !           223: *>          A and B are modified on exit, and the solution to the
        !           224: *>          equilibrated system is inv(diag(S))*X.
        !           225: *> \endverbatim
        !           226: *>
        !           227: *> \param[in] LDX
        !           228: *> \verbatim
        !           229: *>          LDX is INTEGER
        !           230: *>          The leading dimension of the array X.  LDX >= max(1,N).
        !           231: *> \endverbatim
        !           232: *>
        !           233: *> \param[out] RCOND
        !           234: *> \verbatim
        !           235: *>          RCOND is DOUBLE PRECISION
        !           236: *>          The estimate of the reciprocal condition number of the matrix
        !           237: *>          A after equilibration (if done).  If RCOND is less than the
        !           238: *>          machine precision (in particular, if RCOND = 0), the matrix
        !           239: *>          is singular to working precision.  This condition is
        !           240: *>          indicated by a return code of INFO > 0.
        !           241: *> \endverbatim
        !           242: *>
        !           243: *> \param[out] FERR
        !           244: *> \verbatim
        !           245: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
        !           246: *>          The estimated forward error bound for each solution vector
        !           247: *>          X(j) (the j-th column of the solution matrix X).
        !           248: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           249: *>          is an estimated upper bound for the magnitude of the largest
        !           250: *>          element in (X(j) - XTRUE) divided by the magnitude of the
        !           251: *>          largest element in X(j).  The estimate is as reliable as
        !           252: *>          the estimate for RCOND, and is almost always a slight
        !           253: *>          overestimate of the true error.
        !           254: *> \endverbatim
        !           255: *>
        !           256: *> \param[out] BERR
        !           257: *> \verbatim
        !           258: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
        !           259: *>          The componentwise relative backward error of each solution
        !           260: *>          vector X(j) (i.e., the smallest relative change in
        !           261: *>          any element of A or B that makes X(j) an exact solution).
        !           262: *> \endverbatim
        !           263: *>
        !           264: *> \param[out] WORK
        !           265: *> \verbatim
        !           266: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
        !           267: *> \endverbatim
        !           268: *>
        !           269: *> \param[out] IWORK
        !           270: *> \verbatim
        !           271: *>          IWORK is INTEGER array, dimension (N)
        !           272: *> \endverbatim
        !           273: *>
        !           274: *> \param[out] INFO
        !           275: *> \verbatim
        !           276: *>          INFO is INTEGER
        !           277: *>          = 0: successful exit
        !           278: *>          < 0: if INFO = -i, the i-th argument had an illegal value
        !           279: *>          > 0: if INFO = i, and i is
        !           280: *>                <= N:  the leading minor of order i of A is
        !           281: *>                       not positive definite, so the factorization
        !           282: *>                       could not be completed, and the solution has not
        !           283: *>                       been computed. RCOND = 0 is returned.
        !           284: *>                = N+1: U is nonsingular, but RCOND is less than machine
        !           285: *>                       precision, meaning that the matrix is singular
        !           286: *>                       to working precision.  Nevertheless, the
        !           287: *>                       solution and error bounds are computed because
        !           288: *>                       there are a number of situations where the
        !           289: *>                       computed solution can be more accurate than the
        !           290: *>                       value of RCOND would suggest.
        !           291: *> \endverbatim
        !           292: *
        !           293: *  Authors:
        !           294: *  ========
        !           295: *
        !           296: *> \author Univ. of Tennessee 
        !           297: *> \author Univ. of California Berkeley 
        !           298: *> \author Univ. of Colorado Denver 
        !           299: *> \author NAG Ltd. 
        !           300: *
        !           301: *> \date November 2011
        !           302: *
        !           303: *> \ingroup doublePOsolve
        !           304: *
        !           305: *  =====================================================================
1.1       bertrand  306:       SUBROUTINE DPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
                    307:      $                   S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
                    308:      $                   IWORK, INFO )
                    309: *
1.9     ! bertrand  310: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  311: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    312: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  313: *     November 2011
1.1       bertrand  314: *
                    315: *     .. Scalar Arguments ..
                    316:       CHARACTER          EQUED, FACT, UPLO
                    317:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                    318:       DOUBLE PRECISION   RCOND
                    319: *     ..
                    320: *     .. Array Arguments ..
                    321:       INTEGER            IWORK( * )
                    322:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    323:      $                   BERR( * ), FERR( * ), S( * ), WORK( * ),
                    324:      $                   X( LDX, * )
                    325: *     ..
                    326: *
                    327: *  =====================================================================
                    328: *
                    329: *     .. Parameters ..
                    330:       DOUBLE PRECISION   ZERO, ONE
                    331:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    332: *     ..
                    333: *     .. Local Scalars ..
                    334:       LOGICAL            EQUIL, NOFACT, RCEQU
                    335:       INTEGER            I, INFEQU, J
                    336:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
                    337: *     ..
                    338: *     .. External Functions ..
                    339:       LOGICAL            LSAME
                    340:       DOUBLE PRECISION   DLAMCH, DLANSY
                    341:       EXTERNAL           LSAME, DLAMCH, DLANSY
                    342: *     ..
                    343: *     .. External Subroutines ..
                    344:       EXTERNAL           DLACPY, DLAQSY, DPOCON, DPOEQU, DPORFS, DPOTRF,
                    345:      $                   DPOTRS, XERBLA
                    346: *     ..
                    347: *     .. Intrinsic Functions ..
                    348:       INTRINSIC          MAX, MIN
                    349: *     ..
                    350: *     .. Executable Statements ..
                    351: *
                    352:       INFO = 0
                    353:       NOFACT = LSAME( FACT, 'N' )
                    354:       EQUIL = LSAME( FACT, 'E' )
                    355:       IF( NOFACT .OR. EQUIL ) THEN
                    356:          EQUED = 'N'
                    357:          RCEQU = .FALSE.
                    358:       ELSE
                    359:          RCEQU = LSAME( EQUED, 'Y' )
                    360:          SMLNUM = DLAMCH( 'Safe minimum' )
                    361:          BIGNUM = ONE / SMLNUM
                    362:       END IF
                    363: *
                    364: *     Test the input parameters.
                    365: *
                    366:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    367:      $     THEN
                    368:          INFO = -1
                    369:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
                    370:      $          THEN
                    371:          INFO = -2
                    372:       ELSE IF( N.LT.0 ) THEN
                    373:          INFO = -3
                    374:       ELSE IF( NRHS.LT.0 ) THEN
                    375:          INFO = -4
                    376:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    377:          INFO = -6
                    378:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    379:          INFO = -8
                    380:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    381:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    382:          INFO = -9
                    383:       ELSE
                    384:          IF( RCEQU ) THEN
                    385:             SMIN = BIGNUM
                    386:             SMAX = ZERO
                    387:             DO 10 J = 1, N
                    388:                SMIN = MIN( SMIN, S( J ) )
                    389:                SMAX = MAX( SMAX, S( J ) )
                    390:    10       CONTINUE
                    391:             IF( SMIN.LE.ZERO ) THEN
                    392:                INFO = -10
                    393:             ELSE IF( N.GT.0 ) THEN
                    394:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
                    395:             ELSE
                    396:                SCOND = ONE
                    397:             END IF
                    398:          END IF
                    399:          IF( INFO.EQ.0 ) THEN
                    400:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    401:                INFO = -12
                    402:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    403:                INFO = -14
                    404:             END IF
                    405:          END IF
                    406:       END IF
                    407: *
                    408:       IF( INFO.NE.0 ) THEN
                    409:          CALL XERBLA( 'DPOSVX', -INFO )
                    410:          RETURN
                    411:       END IF
                    412: *
                    413:       IF( EQUIL ) THEN
                    414: *
                    415: *        Compute row and column scalings to equilibrate the matrix A.
                    416: *
                    417:          CALL DPOEQU( N, A, LDA, S, SCOND, AMAX, INFEQU )
                    418:          IF( INFEQU.EQ.0 ) THEN
                    419: *
                    420: *           Equilibrate the matrix.
                    421: *
                    422:             CALL DLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
                    423:             RCEQU = LSAME( EQUED, 'Y' )
                    424:          END IF
                    425:       END IF
                    426: *
                    427: *     Scale the right hand side.
                    428: *
                    429:       IF( RCEQU ) THEN
                    430:          DO 30 J = 1, NRHS
                    431:             DO 20 I = 1, N
                    432:                B( I, J ) = S( I )*B( I, J )
                    433:    20       CONTINUE
                    434:    30    CONTINUE
                    435:       END IF
                    436: *
                    437:       IF( NOFACT .OR. EQUIL ) THEN
                    438: *
1.8       bertrand  439: *        Compute the Cholesky factorization A = U**T *U or A = L*L**T.
1.1       bertrand  440: *
                    441:          CALL DLACPY( UPLO, N, N, A, LDA, AF, LDAF )
                    442:          CALL DPOTRF( UPLO, N, AF, LDAF, INFO )
                    443: *
                    444: *        Return if INFO is non-zero.
                    445: *
                    446:          IF( INFO.GT.0 )THEN
                    447:             RCOND = ZERO
                    448:             RETURN
                    449:          END IF
                    450:       END IF
                    451: *
                    452: *     Compute the norm of the matrix A.
                    453: *
                    454:       ANORM = DLANSY( '1', UPLO, N, A, LDA, WORK )
                    455: *
                    456: *     Compute the reciprocal of the condition number of A.
                    457: *
                    458:       CALL DPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
                    459: *
                    460: *     Compute the solution matrix X.
                    461: *
                    462:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    463:       CALL DPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
                    464: *
                    465: *     Use iterative refinement to improve the computed solution and
                    466: *     compute error bounds and backward error estimates for it.
                    467: *
                    468:       CALL DPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
                    469:      $             FERR, BERR, WORK, IWORK, INFO )
                    470: *
                    471: *     Transform the solution matrix X to a solution of the original
                    472: *     system.
                    473: *
                    474:       IF( RCEQU ) THEN
                    475:          DO 50 J = 1, NRHS
                    476:             DO 40 I = 1, N
                    477:                X( I, J ) = S( I )*X( I, J )
                    478:    40       CONTINUE
                    479:    50    CONTINUE
                    480:          DO 60 J = 1, NRHS
                    481:             FERR( J ) = FERR( J ) / SCOND
                    482:    60    CONTINUE
                    483:       END IF
                    484: *
                    485: *     Set INFO = N+1 if the matrix is singular to working precision.
                    486: *
                    487:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    488:      $   INFO = N + 1
                    489: *
                    490:       RETURN
                    491: *
                    492: *     End of DPOSVX
                    493: *
                    494:       END

CVSweb interface <joel.bertrand@systella.fr>