Annotation of rpl/lapack/lapack/dposvx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
        !             2:      $                   S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
        !             3:      $                   IWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          EQUED, FACT, UPLO
        !            12:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
        !            13:       DOUBLE PRECISION   RCOND
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       INTEGER            IWORK( * )
        !            17:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
        !            18:      $                   BERR( * ), FERR( * ), S( * ), WORK( * ),
        !            19:      $                   X( LDX, * )
        !            20: *     ..
        !            21: *
        !            22: *  Purpose
        !            23: *  =======
        !            24: *
        !            25: *  DPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
        !            26: *  compute the solution to a real system of linear equations
        !            27: *     A * X = B,
        !            28: *  where A is an N-by-N symmetric positive definite matrix and X and B
        !            29: *  are N-by-NRHS matrices.
        !            30: *
        !            31: *  Error bounds on the solution and a condition estimate are also
        !            32: *  provided.
        !            33: *
        !            34: *  Description
        !            35: *  ===========
        !            36: *
        !            37: *  The following steps are performed:
        !            38: *
        !            39: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
        !            40: *     the system:
        !            41: *        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
        !            42: *     Whether or not the system will be equilibrated depends on the
        !            43: *     scaling of the matrix A, but if equilibration is used, A is
        !            44: *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
        !            45: *
        !            46: *  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
        !            47: *     factor the matrix A (after equilibration if FACT = 'E') as
        !            48: *        A = U**T* U,  if UPLO = 'U', or
        !            49: *        A = L * L**T,  if UPLO = 'L',
        !            50: *     where U is an upper triangular matrix and L is a lower triangular
        !            51: *     matrix.
        !            52: *
        !            53: *  3. If the leading i-by-i principal minor is not positive definite,
        !            54: *     then the routine returns with INFO = i. Otherwise, the factored
        !            55: *     form of A is used to estimate the condition number of the matrix
        !            56: *     A.  If the reciprocal of the condition number is less than machine
        !            57: *     precision, INFO = N+1 is returned as a warning, but the routine
        !            58: *     still goes on to solve for X and compute error bounds as
        !            59: *     described below.
        !            60: *
        !            61: *  4. The system of equations is solved for X using the factored form
        !            62: *     of A.
        !            63: *
        !            64: *  5. Iterative refinement is applied to improve the computed solution
        !            65: *     matrix and calculate error bounds and backward error estimates
        !            66: *     for it.
        !            67: *
        !            68: *  6. If equilibration was used, the matrix X is premultiplied by
        !            69: *     diag(S) so that it solves the original system before
        !            70: *     equilibration.
        !            71: *
        !            72: *  Arguments
        !            73: *  =========
        !            74: *
        !            75: *  FACT    (input) CHARACTER*1
        !            76: *          Specifies whether or not the factored form of the matrix A is
        !            77: *          supplied on entry, and if not, whether the matrix A should be
        !            78: *          equilibrated before it is factored.
        !            79: *          = 'F':  On entry, AF contains the factored form of A.
        !            80: *                  If EQUED = 'Y', the matrix A has been equilibrated
        !            81: *                  with scaling factors given by S.  A and AF will not
        !            82: *                  be modified.
        !            83: *          = 'N':  The matrix A will be copied to AF and factored.
        !            84: *          = 'E':  The matrix A will be equilibrated if necessary, then
        !            85: *                  copied to AF and factored.
        !            86: *
        !            87: *  UPLO    (input) CHARACTER*1
        !            88: *          = 'U':  Upper triangle of A is stored;
        !            89: *          = 'L':  Lower triangle of A is stored.
        !            90: *
        !            91: *  N       (input) INTEGER
        !            92: *          The number of linear equations, i.e., the order of the
        !            93: *          matrix A.  N >= 0.
        !            94: *
        !            95: *  NRHS    (input) INTEGER
        !            96: *          The number of right hand sides, i.e., the number of columns
        !            97: *          of the matrices B and X.  NRHS >= 0.
        !            98: *
        !            99: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
        !           100: *          On entry, the symmetric matrix A, except if FACT = 'F' and
        !           101: *          EQUED = 'Y', then A must contain the equilibrated matrix
        !           102: *          diag(S)*A*diag(S).  If UPLO = 'U', the leading
        !           103: *          N-by-N upper triangular part of A contains the upper
        !           104: *          triangular part of the matrix A, and the strictly lower
        !           105: *          triangular part of A is not referenced.  If UPLO = 'L', the
        !           106: *          leading N-by-N lower triangular part of A contains the lower
        !           107: *          triangular part of the matrix A, and the strictly upper
        !           108: *          triangular part of A is not referenced.  A is not modified if
        !           109: *          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
        !           110: *
        !           111: *          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
        !           112: *          diag(S)*A*diag(S).
        !           113: *
        !           114: *  LDA     (input) INTEGER
        !           115: *          The leading dimension of the array A.  LDA >= max(1,N).
        !           116: *
        !           117: *  AF      (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
        !           118: *          If FACT = 'F', then AF is an input argument and on entry
        !           119: *          contains the triangular factor U or L from the Cholesky
        !           120: *          factorization A = U**T*U or A = L*L**T, in the same storage
        !           121: *          format as A.  If EQUED .ne. 'N', then AF is the factored form
        !           122: *          of the equilibrated matrix diag(S)*A*diag(S).
        !           123: *
        !           124: *          If FACT = 'N', then AF is an output argument and on exit
        !           125: *          returns the triangular factor U or L from the Cholesky
        !           126: *          factorization A = U**T*U or A = L*L**T of the original
        !           127: *          matrix A.
        !           128: *
        !           129: *          If FACT = 'E', then AF is an output argument and on exit
        !           130: *          returns the triangular factor U or L from the Cholesky
        !           131: *          factorization A = U**T*U or A = L*L**T of the equilibrated
        !           132: *          matrix A (see the description of A for the form of the
        !           133: *          equilibrated matrix).
        !           134: *
        !           135: *  LDAF    (input) INTEGER
        !           136: *          The leading dimension of the array AF.  LDAF >= max(1,N).
        !           137: *
        !           138: *  EQUED   (input or output) CHARACTER*1
        !           139: *          Specifies the form of equilibration that was done.
        !           140: *          = 'N':  No equilibration (always true if FACT = 'N').
        !           141: *          = 'Y':  Equilibration was done, i.e., A has been replaced by
        !           142: *                  diag(S) * A * diag(S).
        !           143: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
        !           144: *          output argument.
        !           145: *
        !           146: *  S       (input or output) DOUBLE PRECISION array, dimension (N)
        !           147: *          The scale factors for A; not accessed if EQUED = 'N'.  S is
        !           148: *          an input argument if FACT = 'F'; otherwise, S is an output
        !           149: *          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
        !           150: *          must be positive.
        !           151: *
        !           152: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           153: *          On entry, the N-by-NRHS right hand side matrix B.
        !           154: *          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
        !           155: *          B is overwritten by diag(S) * B.
        !           156: *
        !           157: *  LDB     (input) INTEGER
        !           158: *          The leading dimension of the array B.  LDB >= max(1,N).
        !           159: *
        !           160: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
        !           161: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
        !           162: *          the original system of equations.  Note that if EQUED = 'Y',
        !           163: *          A and B are modified on exit, and the solution to the
        !           164: *          equilibrated system is inv(diag(S))*X.
        !           165: *
        !           166: *  LDX     (input) INTEGER
        !           167: *          The leading dimension of the array X.  LDX >= max(1,N).
        !           168: *
        !           169: *  RCOND   (output) DOUBLE PRECISION
        !           170: *          The estimate of the reciprocal condition number of the matrix
        !           171: *          A after equilibration (if done).  If RCOND is less than the
        !           172: *          machine precision (in particular, if RCOND = 0), the matrix
        !           173: *          is singular to working precision.  This condition is
        !           174: *          indicated by a return code of INFO > 0.
        !           175: *
        !           176: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           177: *          The estimated forward error bound for each solution vector
        !           178: *          X(j) (the j-th column of the solution matrix X).
        !           179: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           180: *          is an estimated upper bound for the magnitude of the largest
        !           181: *          element in (X(j) - XTRUE) divided by the magnitude of the
        !           182: *          largest element in X(j).  The estimate is as reliable as
        !           183: *          the estimate for RCOND, and is almost always a slight
        !           184: *          overestimate of the true error.
        !           185: *
        !           186: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           187: *          The componentwise relative backward error of each solution
        !           188: *          vector X(j) (i.e., the smallest relative change in
        !           189: *          any element of A or B that makes X(j) an exact solution).
        !           190: *
        !           191: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
        !           192: *
        !           193: *  IWORK   (workspace) INTEGER array, dimension (N)
        !           194: *
        !           195: *  INFO    (output) INTEGER
        !           196: *          = 0: successful exit
        !           197: *          < 0: if INFO = -i, the i-th argument had an illegal value
        !           198: *          > 0: if INFO = i, and i is
        !           199: *                <= N:  the leading minor of order i of A is
        !           200: *                       not positive definite, so the factorization
        !           201: *                       could not be completed, and the solution has not
        !           202: *                       been computed. RCOND = 0 is returned.
        !           203: *                = N+1: U is nonsingular, but RCOND is less than machine
        !           204: *                       precision, meaning that the matrix is singular
        !           205: *                       to working precision.  Nevertheless, the
        !           206: *                       solution and error bounds are computed because
        !           207: *                       there are a number of situations where the
        !           208: *                       computed solution can be more accurate than the
        !           209: *                       value of RCOND would suggest.
        !           210: *
        !           211: *  =====================================================================
        !           212: *
        !           213: *     .. Parameters ..
        !           214:       DOUBLE PRECISION   ZERO, ONE
        !           215:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           216: *     ..
        !           217: *     .. Local Scalars ..
        !           218:       LOGICAL            EQUIL, NOFACT, RCEQU
        !           219:       INTEGER            I, INFEQU, J
        !           220:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
        !           221: *     ..
        !           222: *     .. External Functions ..
        !           223:       LOGICAL            LSAME
        !           224:       DOUBLE PRECISION   DLAMCH, DLANSY
        !           225:       EXTERNAL           LSAME, DLAMCH, DLANSY
        !           226: *     ..
        !           227: *     .. External Subroutines ..
        !           228:       EXTERNAL           DLACPY, DLAQSY, DPOCON, DPOEQU, DPORFS, DPOTRF,
        !           229:      $                   DPOTRS, XERBLA
        !           230: *     ..
        !           231: *     .. Intrinsic Functions ..
        !           232:       INTRINSIC          MAX, MIN
        !           233: *     ..
        !           234: *     .. Executable Statements ..
        !           235: *
        !           236:       INFO = 0
        !           237:       NOFACT = LSAME( FACT, 'N' )
        !           238:       EQUIL = LSAME( FACT, 'E' )
        !           239:       IF( NOFACT .OR. EQUIL ) THEN
        !           240:          EQUED = 'N'
        !           241:          RCEQU = .FALSE.
        !           242:       ELSE
        !           243:          RCEQU = LSAME( EQUED, 'Y' )
        !           244:          SMLNUM = DLAMCH( 'Safe minimum' )
        !           245:          BIGNUM = ONE / SMLNUM
        !           246:       END IF
        !           247: *
        !           248: *     Test the input parameters.
        !           249: *
        !           250:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
        !           251:      $     THEN
        !           252:          INFO = -1
        !           253:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
        !           254:      $          THEN
        !           255:          INFO = -2
        !           256:       ELSE IF( N.LT.0 ) THEN
        !           257:          INFO = -3
        !           258:       ELSE IF( NRHS.LT.0 ) THEN
        !           259:          INFO = -4
        !           260:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           261:          INFO = -6
        !           262:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
        !           263:          INFO = -8
        !           264:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
        !           265:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
        !           266:          INFO = -9
        !           267:       ELSE
        !           268:          IF( RCEQU ) THEN
        !           269:             SMIN = BIGNUM
        !           270:             SMAX = ZERO
        !           271:             DO 10 J = 1, N
        !           272:                SMIN = MIN( SMIN, S( J ) )
        !           273:                SMAX = MAX( SMAX, S( J ) )
        !           274:    10       CONTINUE
        !           275:             IF( SMIN.LE.ZERO ) THEN
        !           276:                INFO = -10
        !           277:             ELSE IF( N.GT.0 ) THEN
        !           278:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
        !           279:             ELSE
        !           280:                SCOND = ONE
        !           281:             END IF
        !           282:          END IF
        !           283:          IF( INFO.EQ.0 ) THEN
        !           284:             IF( LDB.LT.MAX( 1, N ) ) THEN
        !           285:                INFO = -12
        !           286:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           287:                INFO = -14
        !           288:             END IF
        !           289:          END IF
        !           290:       END IF
        !           291: *
        !           292:       IF( INFO.NE.0 ) THEN
        !           293:          CALL XERBLA( 'DPOSVX', -INFO )
        !           294:          RETURN
        !           295:       END IF
        !           296: *
        !           297:       IF( EQUIL ) THEN
        !           298: *
        !           299: *        Compute row and column scalings to equilibrate the matrix A.
        !           300: *
        !           301:          CALL DPOEQU( N, A, LDA, S, SCOND, AMAX, INFEQU )
        !           302:          IF( INFEQU.EQ.0 ) THEN
        !           303: *
        !           304: *           Equilibrate the matrix.
        !           305: *
        !           306:             CALL DLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
        !           307:             RCEQU = LSAME( EQUED, 'Y' )
        !           308:          END IF
        !           309:       END IF
        !           310: *
        !           311: *     Scale the right hand side.
        !           312: *
        !           313:       IF( RCEQU ) THEN
        !           314:          DO 30 J = 1, NRHS
        !           315:             DO 20 I = 1, N
        !           316:                B( I, J ) = S( I )*B( I, J )
        !           317:    20       CONTINUE
        !           318:    30    CONTINUE
        !           319:       END IF
        !           320: *
        !           321:       IF( NOFACT .OR. EQUIL ) THEN
        !           322: *
        !           323: *        Compute the Cholesky factorization A = U'*U or A = L*L'.
        !           324: *
        !           325:          CALL DLACPY( UPLO, N, N, A, LDA, AF, LDAF )
        !           326:          CALL DPOTRF( UPLO, N, AF, LDAF, INFO )
        !           327: *
        !           328: *        Return if INFO is non-zero.
        !           329: *
        !           330:          IF( INFO.GT.0 )THEN
        !           331:             RCOND = ZERO
        !           332:             RETURN
        !           333:          END IF
        !           334:       END IF
        !           335: *
        !           336: *     Compute the norm of the matrix A.
        !           337: *
        !           338:       ANORM = DLANSY( '1', UPLO, N, A, LDA, WORK )
        !           339: *
        !           340: *     Compute the reciprocal of the condition number of A.
        !           341: *
        !           342:       CALL DPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
        !           343: *
        !           344: *     Compute the solution matrix X.
        !           345: *
        !           346:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
        !           347:       CALL DPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
        !           348: *
        !           349: *     Use iterative refinement to improve the computed solution and
        !           350: *     compute error bounds and backward error estimates for it.
        !           351: *
        !           352:       CALL DPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
        !           353:      $             FERR, BERR, WORK, IWORK, INFO )
        !           354: *
        !           355: *     Transform the solution matrix X to a solution of the original
        !           356: *     system.
        !           357: *
        !           358:       IF( RCEQU ) THEN
        !           359:          DO 50 J = 1, NRHS
        !           360:             DO 40 I = 1, N
        !           361:                X( I, J ) = S( I )*X( I, J )
        !           362:    40       CONTINUE
        !           363:    50    CONTINUE
        !           364:          DO 60 J = 1, NRHS
        !           365:             FERR( J ) = FERR( J ) / SCOND
        !           366:    60    CONTINUE
        !           367:       END IF
        !           368: *
        !           369: *     Set INFO = N+1 if the matrix is singular to working precision.
        !           370: *
        !           371:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
        !           372:      $   INFO = N + 1
        !           373: *
        !           374:       RETURN
        !           375: *
        !           376: *     End of DPOSVX
        !           377: *
        !           378:       END

CVSweb interface <joel.bertrand@systella.fr>