File:  [local] / rpl / lapack / lapack / dporfsx.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:04 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DPORFSX
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DPORFSX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dporfsx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dporfsx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dporfsx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B,
   22: *                           LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
   23: *                           ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
   24: *                           WORK, IWORK, INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       CHARACTER          UPLO, EQUED
   28: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
   29: *      $                   N_ERR_BNDS
   30: *       DOUBLE PRECISION   RCOND
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       INTEGER            IWORK( * )
   34: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   35: *      $                   X( LDX, * ), WORK( * )
   36: *       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
   37: *      $                   ERR_BNDS_NORM( NRHS, * ),
   38: *      $                   ERR_BNDS_COMP( NRHS, * )
   39: *       ..
   40: *
   41: *
   42: *> \par Purpose:
   43: *  =============
   44: *>
   45: *> \verbatim
   46: *>
   47: *>    DPORFSX improves the computed solution to a system of linear
   48: *>    equations when the coefficient matrix is symmetric positive
   49: *>    definite, and provides error bounds and backward error estimates
   50: *>    for the solution.  In addition to normwise error bound, the code
   51: *>    provides maximum componentwise error bound if possible.  See
   52: *>    comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
   53: *>    error bounds.
   54: *>
   55: *>    The original system of linear equations may have been equilibrated
   56: *>    before calling this routine, as described by arguments EQUED and S
   57: *>    below. In this case, the solution and error bounds returned are
   58: *>    for the original unequilibrated system.
   59: *> \endverbatim
   60: *
   61: *  Arguments:
   62: *  ==========
   63: *
   64: *> \verbatim
   65: *>     Some optional parameters are bundled in the PARAMS array.  These
   66: *>     settings determine how refinement is performed, but often the
   67: *>     defaults are acceptable.  If the defaults are acceptable, users
   68: *>     can pass NPARAMS = 0 which prevents the source code from accessing
   69: *>     the PARAMS argument.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] UPLO
   73: *> \verbatim
   74: *>          UPLO is CHARACTER*1
   75: *>       = 'U':  Upper triangle of A is stored;
   76: *>       = 'L':  Lower triangle of A is stored.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] EQUED
   80: *> \verbatim
   81: *>          EQUED is CHARACTER*1
   82: *>     Specifies the form of equilibration that was done to A
   83: *>     before calling this routine. This is needed to compute
   84: *>     the solution and error bounds correctly.
   85: *>       = 'N':  No equilibration
   86: *>       = 'Y':  Both row and column equilibration, i.e., A has been
   87: *>               replaced by diag(S) * A * diag(S).
   88: *>               The right hand side B has been changed accordingly.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] N
   92: *> \verbatim
   93: *>          N is INTEGER
   94: *>     The order of the matrix A.  N >= 0.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] NRHS
   98: *> \verbatim
   99: *>          NRHS is INTEGER
  100: *>     The number of right hand sides, i.e., the number of columns
  101: *>     of the matrices B and X.  NRHS >= 0.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] A
  105: *> \verbatim
  106: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  107: *>     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
  108: *>     upper triangular part of A contains the upper triangular part
  109: *>     of the matrix A, and the strictly lower triangular part of A
  110: *>     is not referenced.  If UPLO = 'L', the leading N-by-N lower
  111: *>     triangular part of A contains the lower triangular part of
  112: *>     the matrix A, and the strictly upper triangular part of A is
  113: *>     not referenced.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDA
  117: *> \verbatim
  118: *>          LDA is INTEGER
  119: *>     The leading dimension of the array A.  LDA >= max(1,N).
  120: *> \endverbatim
  121: *>
  122: *> \param[in] AF
  123: *> \verbatim
  124: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
  125: *>     The triangular factor U or L from the Cholesky factorization
  126: *>     A = U**T*U or A = L*L**T, as computed by DPOTRF.
  127: *> \endverbatim
  128: *>
  129: *> \param[in] LDAF
  130: *> \verbatim
  131: *>          LDAF is INTEGER
  132: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  133: *> \endverbatim
  134: *>
  135: *> \param[in,out] S
  136: *> \verbatim
  137: *>          S is DOUBLE PRECISION array, dimension (N)
  138: *>     The scale factors for A.  If EQUED = 'Y', A is multiplied on
  139: *>     the left and right by diag(S).  S is an input argument if FACT =
  140: *>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
  141: *>     = 'Y', each element of S must be positive.  If S is output, each
  142: *>     element of S is a power of the radix. If S is input, each element
  143: *>     of S should be a power of the radix to ensure a reliable solution
  144: *>     and error estimates. Scaling by powers of the radix does not cause
  145: *>     rounding errors unless the result underflows or overflows.
  146: *>     Rounding errors during scaling lead to refining with a matrix that
  147: *>     is not equivalent to the input matrix, producing error estimates
  148: *>     that may not be reliable.
  149: *> \endverbatim
  150: *>
  151: *> \param[in] B
  152: *> \verbatim
  153: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  154: *>     The right hand side matrix B.
  155: *> \endverbatim
  156: *>
  157: *> \param[in] LDB
  158: *> \verbatim
  159: *>          LDB is INTEGER
  160: *>     The leading dimension of the array B.  LDB >= max(1,N).
  161: *> \endverbatim
  162: *>
  163: *> \param[in,out] X
  164: *> \verbatim
  165: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  166: *>     On entry, the solution matrix X, as computed by DGETRS.
  167: *>     On exit, the improved solution matrix X.
  168: *> \endverbatim
  169: *>
  170: *> \param[in] LDX
  171: *> \verbatim
  172: *>          LDX is INTEGER
  173: *>     The leading dimension of the array X.  LDX >= max(1,N).
  174: *> \endverbatim
  175: *>
  176: *> \param[out] RCOND
  177: *> \verbatim
  178: *>          RCOND is DOUBLE PRECISION
  179: *>     Reciprocal scaled condition number.  This is an estimate of the
  180: *>     reciprocal Skeel condition number of the matrix A after
  181: *>     equilibration (if done).  If this is less than the machine
  182: *>     precision (in particular, if it is zero), the matrix is singular
  183: *>     to working precision.  Note that the error may still be small even
  184: *>     if this number is very small and the matrix appears ill-
  185: *>     conditioned.
  186: *> \endverbatim
  187: *>
  188: *> \param[out] BERR
  189: *> \verbatim
  190: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  191: *>     Componentwise relative backward error.  This is the
  192: *>     componentwise relative backward error of each solution vector X(j)
  193: *>     (i.e., the smallest relative change in any element of A or B that
  194: *>     makes X(j) an exact solution).
  195: *> \endverbatim
  196: *>
  197: *> \param[in] N_ERR_BNDS
  198: *> \verbatim
  199: *>          N_ERR_BNDS is INTEGER
  200: *>     Number of error bounds to return for each right hand side
  201: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
  202: *>     ERR_BNDS_COMP below.
  203: *> \endverbatim
  204: *>
  205: *> \param[out] ERR_BNDS_NORM
  206: *> \verbatim
  207: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  208: *>     For each right-hand side, this array contains information about
  209: *>     various error bounds and condition numbers corresponding to the
  210: *>     normwise relative error, which is defined as follows:
  211: *>
  212: *>     Normwise relative error in the ith solution vector:
  213: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  214: *>            ------------------------------
  215: *>                  max_j abs(X(j,i))
  216: *>
  217: *>     The array is indexed by the type of error information as described
  218: *>     below. There currently are up to three pieces of information
  219: *>     returned.
  220: *>
  221: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  222: *>     right-hand side.
  223: *>
  224: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  225: *>     three fields:
  226: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  227: *>              reciprocal condition number is less than the threshold
  228: *>              sqrt(n) * dlamch('Epsilon').
  229: *>
  230: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  231: *>              almost certainly within a factor of 10 of the true error
  232: *>              so long as the next entry is greater than the threshold
  233: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  234: *>              be trusted if the previous boolean is true.
  235: *>
  236: *>     err = 3  Reciprocal condition number: Estimated normwise
  237: *>              reciprocal condition number.  Compared with the threshold
  238: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  239: *>              estimate is "guaranteed". These reciprocal condition
  240: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  241: *>              appropriately scaled matrix Z.
  242: *>              Let Z = S*A, where S scales each row by a power of the
  243: *>              radix so all absolute row sums of Z are approximately 1.
  244: *>
  245: *>     See Lapack Working Note 165 for further details and extra
  246: *>     cautions.
  247: *> \endverbatim
  248: *>
  249: *> \param[out] ERR_BNDS_COMP
  250: *> \verbatim
  251: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  252: *>     For each right-hand side, this array contains information about
  253: *>     various error bounds and condition numbers corresponding to the
  254: *>     componentwise relative error, which is defined as follows:
  255: *>
  256: *>     Componentwise relative error in the ith solution vector:
  257: *>                    abs(XTRUE(j,i) - X(j,i))
  258: *>             max_j ----------------------
  259: *>                         abs(X(j,i))
  260: *>
  261: *>     The array is indexed by the right-hand side i (on which the
  262: *>     componentwise relative error depends), and the type of error
  263: *>     information as described below. There currently are up to three
  264: *>     pieces of information returned for each right-hand side. If
  265: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  266: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
  267: *>     the first (:,N_ERR_BNDS) entries are returned.
  268: *>
  269: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  270: *>     right-hand side.
  271: *>
  272: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  273: *>     three fields:
  274: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  275: *>              reciprocal condition number is less than the threshold
  276: *>              sqrt(n) * dlamch('Epsilon').
  277: *>
  278: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  279: *>              almost certainly within a factor of 10 of the true error
  280: *>              so long as the next entry is greater than the threshold
  281: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  282: *>              be trusted if the previous boolean is true.
  283: *>
  284: *>     err = 3  Reciprocal condition number: Estimated componentwise
  285: *>              reciprocal condition number.  Compared with the threshold
  286: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  287: *>              estimate is "guaranteed". These reciprocal condition
  288: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  289: *>              appropriately scaled matrix Z.
  290: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  291: *>              current right-hand side and S scales each row of
  292: *>              A*diag(x) by a power of the radix so all absolute row
  293: *>              sums of Z are approximately 1.
  294: *>
  295: *>     See Lapack Working Note 165 for further details and extra
  296: *>     cautions.
  297: *> \endverbatim
  298: *>
  299: *> \param[in] NPARAMS
  300: *> \verbatim
  301: *>          NPARAMS is INTEGER
  302: *>     Specifies the number of parameters set in PARAMS.  If <= 0, the
  303: *>     PARAMS array is never referenced and default values are used.
  304: *> \endverbatim
  305: *>
  306: *> \param[in,out] PARAMS
  307: *> \verbatim
  308: *>          PARAMS is DOUBLE PRECISION array, dimension (NPARAMS)
  309: *>     Specifies algorithm parameters.  If an entry is < 0.0, then
  310: *>     that entry will be filled with default value used for that
  311: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
  312: *>     are used for higher-numbered parameters.
  313: *>
  314: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  315: *>            refinement or not.
  316: *>         Default: 1.0D+0
  317: *>            = 0.0:  No refinement is performed, and no error bounds are
  318: *>                    computed.
  319: *>            = 1.0:  Use the double-precision refinement algorithm,
  320: *>                    possibly with doubled-single computations if the
  321: *>                    compilation environment does not support DOUBLE
  322: *>                    PRECISION.
  323: *>              (other values are reserved for future use)
  324: *>
  325: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  326: *>            computations allowed for refinement.
  327: *>         Default: 10
  328: *>         Aggressive: Set to 100 to permit convergence using approximate
  329: *>                     factorizations or factorizations other than LU. If
  330: *>                     the factorization uses a technique other than
  331: *>                     Gaussian elimination, the guarantees in
  332: *>                     err_bnds_norm and err_bnds_comp may no longer be
  333: *>                     trustworthy.
  334: *>
  335: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  336: *>            will attempt to find a solution with small componentwise
  337: *>            relative error in the double-precision algorithm.  Positive
  338: *>            is true, 0.0 is false.
  339: *>         Default: 1.0 (attempt componentwise convergence)
  340: *> \endverbatim
  341: *>
  342: *> \param[out] WORK
  343: *> \verbatim
  344: *>          WORK is DOUBLE PRECISION array, dimension (4*N)
  345: *> \endverbatim
  346: *>
  347: *> \param[out] IWORK
  348: *> \verbatim
  349: *>          IWORK is INTEGER array, dimension (N)
  350: *> \endverbatim
  351: *>
  352: *> \param[out] INFO
  353: *> \verbatim
  354: *>          INFO is INTEGER
  355: *>       = 0:  Successful exit. The solution to every right-hand side is
  356: *>         guaranteed.
  357: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
  358: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
  359: *>         has been completed, but the factor U is exactly singular, so
  360: *>         the solution and error bounds could not be computed. RCOND = 0
  361: *>         is returned.
  362: *>       = N+J: The solution corresponding to the Jth right-hand side is
  363: *>         not guaranteed. The solutions corresponding to other right-
  364: *>         hand sides K with K > J may not be guaranteed as well, but
  365: *>         only the first such right-hand side is reported. If a small
  366: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
  367: *>         the Jth right-hand side is the first with a normwise error
  368: *>         bound that is not guaranteed (the smallest J such
  369: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  370: *>         the Jth right-hand side is the first with either a normwise or
  371: *>         componentwise error bound that is not guaranteed (the smallest
  372: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  373: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  374: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  375: *>         about all of the right-hand sides check ERR_BNDS_NORM or
  376: *>         ERR_BNDS_COMP.
  377: *> \endverbatim
  378: *
  379: *  Authors:
  380: *  ========
  381: *
  382: *> \author Univ. of Tennessee
  383: *> \author Univ. of California Berkeley
  384: *> \author Univ. of Colorado Denver
  385: *> \author NAG Ltd.
  386: *
  387: *> \ingroup doublePOcomputational
  388: *
  389: *  =====================================================================
  390:       SUBROUTINE DPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B,
  391:      $                    LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
  392:      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
  393:      $                    WORK, IWORK, INFO )
  394: *
  395: *  -- LAPACK computational routine --
  396: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  397: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  398: *
  399: *     .. Scalar Arguments ..
  400:       CHARACTER          UPLO, EQUED
  401:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
  402:      $                   N_ERR_BNDS
  403:       DOUBLE PRECISION   RCOND
  404: *     ..
  405: *     .. Array Arguments ..
  406:       INTEGER            IWORK( * )
  407:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  408:      $                   X( LDX, * ), WORK( * )
  409:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
  410:      $                   ERR_BNDS_NORM( NRHS, * ),
  411:      $                   ERR_BNDS_COMP( NRHS, * )
  412: *     ..
  413: *
  414: *  ==================================================================
  415: *
  416: *     .. Parameters ..
  417:       DOUBLE PRECISION   ZERO, ONE
  418:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  419:       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
  420:       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
  421:       DOUBLE PRECISION   DZTHRESH_DEFAULT
  422:       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
  423:       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
  424:       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
  425:       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
  426:       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
  427:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  428:      $                   LA_LINRX_CWISE_I
  429:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  430:      $                   LA_LINRX_ITHRESH_I = 2 )
  431:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  432:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  433:      $                   LA_LINRX_RCOND_I
  434:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  435:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  436: *     ..
  437: *     .. Local Scalars ..
  438:       CHARACTER(1)       NORM
  439:       LOGICAL            RCEQU
  440:       INTEGER            J, PREC_TYPE, REF_TYPE
  441:       INTEGER            N_NORMS
  442:       DOUBLE PRECISION   ANORM, RCOND_TMP
  443:       DOUBLE PRECISION   ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
  444:       LOGICAL            IGNORE_CWISE
  445:       INTEGER            ITHRESH
  446:       DOUBLE PRECISION   RTHRESH, UNSTABLE_THRESH
  447: *     ..
  448: *     .. External Subroutines ..
  449:       EXTERNAL           XERBLA, DPOCON, DLA_PORFSX_EXTENDED
  450: *     ..
  451: *     .. Intrinsic Functions ..
  452:       INTRINSIC          MAX, SQRT
  453: *     ..
  454: *     .. External Functions ..
  455:       EXTERNAL           LSAME, ILAPREC
  456:       EXTERNAL           DLAMCH, DLANSY, DLA_PORCOND
  457:       DOUBLE PRECISION   DLAMCH, DLANSY, DLA_PORCOND
  458:       LOGICAL            LSAME
  459:       INTEGER            ILAPREC
  460: *     ..
  461: *     .. Executable Statements ..
  462: *
  463: *     Check the input parameters.
  464: *
  465:       INFO = 0
  466:       REF_TYPE = INT( ITREF_DEFAULT )
  467:       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
  468:          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
  469:             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
  470:          ELSE
  471:             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
  472:          END IF
  473:       END IF
  474: *
  475: *     Set default parameters.
  476: *
  477:       ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
  478:       ITHRESH = INT( ITHRESH_DEFAULT )
  479:       RTHRESH = RTHRESH_DEFAULT
  480:       UNSTABLE_THRESH = DZTHRESH_DEFAULT
  481:       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
  482: *
  483:       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
  484:          IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
  485:             PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
  486:          ELSE
  487:             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
  488:          END IF
  489:       END IF
  490:       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
  491:          IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
  492:             IF ( IGNORE_CWISE ) THEN
  493:                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
  494:             ELSE
  495:                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
  496:             END IF
  497:          ELSE
  498:             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
  499:          END IF
  500:       END IF
  501:       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
  502:          N_NORMS = 0
  503:       ELSE IF ( IGNORE_CWISE ) THEN
  504:          N_NORMS = 1
  505:       ELSE
  506:          N_NORMS = 2
  507:       END IF
  508: *
  509:       RCEQU = LSAME( EQUED, 'Y' )
  510: *
  511: *     Test input parameters.
  512: *
  513:       IF (.NOT.LSAME(UPLO, 'U') .AND. .NOT.LSAME(UPLO, 'L')) THEN
  514:         INFO = -1
  515:       ELSE IF( .NOT.RCEQU .AND. .NOT.LSAME( EQUED, 'N' ) ) THEN
  516:         INFO = -2
  517:       ELSE IF( N.LT.0 ) THEN
  518:         INFO = -3
  519:       ELSE IF( NRHS.LT.0 ) THEN
  520:         INFO = -4
  521:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  522:         INFO = -6
  523:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  524:         INFO = -8
  525:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  526:         INFO = -11
  527:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  528:         INFO = -13
  529:       END IF
  530:       IF( INFO.NE.0 ) THEN
  531:         CALL XERBLA( 'DPORFSX', -INFO )
  532:         RETURN
  533:       END IF
  534: *
  535: *     Quick return if possible.
  536: *
  537:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  538:          RCOND = 1.0D+0
  539:          DO J = 1, NRHS
  540:             BERR( J ) = 0.0D+0
  541:             IF ( N_ERR_BNDS .GE. 1 ) THEN
  542:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  543:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  544:             END IF
  545:             IF ( N_ERR_BNDS .GE. 2 ) THEN
  546:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
  547:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
  548:             END IF
  549:             IF ( N_ERR_BNDS .GE. 3 ) THEN
  550:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
  551:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
  552:             END IF
  553:          END DO
  554:          RETURN
  555:       END IF
  556: *
  557: *     Default to failure.
  558: *
  559:       RCOND = 0.0D+0
  560:       DO J = 1, NRHS
  561:          BERR( J ) = 1.0D+0
  562:          IF ( N_ERR_BNDS .GE. 1 ) THEN
  563:             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  564:             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  565:          END IF
  566:          IF ( N_ERR_BNDS .GE. 2 ) THEN
  567:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  568:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  569:          END IF
  570:          IF ( N_ERR_BNDS .GE. 3 ) THEN
  571:             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
  572:             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
  573:          END IF
  574:       END DO
  575: *
  576: *     Compute the norm of A and the reciprocal of the condition
  577: *     number of A.
  578: *
  579:       NORM = 'I'
  580:       ANORM = DLANSY( NORM, UPLO, N, A, LDA, WORK )
  581:       CALL DPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK,
  582:      $     IWORK, INFO )
  583: *
  584: *     Perform refinement on each right-hand side
  585: *
  586:       IF ( REF_TYPE .NE. 0 ) THEN
  587: 
  588:          PREC_TYPE = ILAPREC( 'E' )
  589: 
  590:          CALL DLA_PORFSX_EXTENDED( PREC_TYPE, UPLO,  N,
  591:      $        NRHS, A, LDA, AF, LDAF, RCEQU, S, B,
  592:      $        LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP,
  593:      $        WORK( N+1 ), WORK( 1 ), WORK( 2*N+1 ), WORK( 1 ), RCOND,
  594:      $        ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
  595:      $        INFO )
  596:       END IF
  597: 
  598:       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
  599:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1 ) THEN
  600: *
  601: *     Compute scaled normwise condition number cond(A*C).
  602: *
  603:          IF ( RCEQU ) THEN
  604:             RCOND_TMP = DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
  605:      $           -1, S, INFO, WORK, IWORK )
  606:          ELSE
  607:             RCOND_TMP = DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
  608:      $           0, S, INFO, WORK, IWORK )
  609:          END IF
  610:          DO J = 1, NRHS
  611: *
  612: *     Cap the error at 1.0.
  613: *
  614:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
  615:      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
  616:      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  617: *
  618: *     Threshold the error (see LAWN).
  619: *
  620:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
  621:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  622:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
  623:                IF ( INFO .LE. N ) INFO = N + J
  624:             ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
  625:      $              THEN
  626:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
  627:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  628:             END IF
  629: *
  630: *     Save the condition number.
  631: *
  632:             IF (N_ERR_BNDS .GE. LA_LINRX_RCOND_I) THEN
  633:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  634:             END IF
  635:          END DO
  636:       END IF
  637: 
  638:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
  639: *
  640: *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
  641: *     each right-hand side using the current solution as an estimate of
  642: *     the true solution.  If the componentwise error estimate is too
  643: *     large, then the solution is a lousy estimate of truth and the
  644: *     estimated RCOND may be too optimistic.  To avoid misleading users,
  645: *     the inverse condition number is set to 0.0 when the estimated
  646: *     cwise error is at least CWISE_WRONG.
  647: *
  648:          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
  649:          DO J = 1, NRHS
  650:             IF (ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
  651:      $     THEN
  652:                RCOND_TMP = DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF, 1,
  653:      $              X( 1, J ), INFO, WORK, IWORK )
  654:             ELSE
  655:                RCOND_TMP = 0.0D+0
  656:             END IF
  657: *
  658: *     Cap the error at 1.0.
  659: *
  660:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
  661:      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
  662:      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  663: *
  664: *     Threshold the error (see LAWN).
  665: *
  666:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
  667:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  668:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
  669:                IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
  670:      $              .AND. INFO.LT.N + J ) INFO = N + J
  671:             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
  672:      $              .LT. ERR_LBND ) THEN
  673:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
  674:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  675:             END IF
  676: *
  677: *     Save the condition number.
  678: *
  679:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
  680:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  681:             END IF
  682: 
  683:          END DO
  684:       END IF
  685: *
  686:       RETURN
  687: *
  688: *     End of DPORFSX
  689: *
  690:       END

CVSweb interface <joel.bertrand@systella.fr>