Annotation of rpl/lapack/lapack/dporfsx.f, revision 1.11

1.5       bertrand    1: *> \brief \b DPORFSX
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DPORFSX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dporfsx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dporfsx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dporfsx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B,
                     22: *                           LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
                     23: *                           ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
                     24: *                           WORK, IWORK, INFO )
                     25: * 
                     26: *       .. Scalar Arguments ..
                     27: *       CHARACTER          UPLO, EQUED
                     28: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
                     29: *      $                   N_ERR_BNDS
                     30: *       DOUBLE PRECISION   RCOND
                     31: *       ..
                     32: *       .. Array Arguments ..
                     33: *       INTEGER            IWORK( * )
                     34: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     35: *      $                   X( LDX, * ), WORK( * )
                     36: *       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
                     37: *      $                   ERR_BNDS_NORM( NRHS, * ),
                     38: *      $                   ERR_BNDS_COMP( NRHS, * )
                     39: *       ..
                     40: *  
                     41: *
                     42: *> \par Purpose:
                     43: *  =============
                     44: *>
                     45: *> \verbatim
                     46: *>
                     47: *>    DPORFSX improves the computed solution to a system of linear
                     48: *>    equations when the coefficient matrix is symmetric positive
                     49: *>    definite, and provides error bounds and backward error estimates
                     50: *>    for the solution.  In addition to normwise error bound, the code
                     51: *>    provides maximum componentwise error bound if possible.  See
                     52: *>    comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
                     53: *>    error bounds.
                     54: *>
                     55: *>    The original system of linear equations may have been equilibrated
                     56: *>    before calling this routine, as described by arguments EQUED and S
                     57: *>    below. In this case, the solution and error bounds returned are
                     58: *>    for the original unequilibrated system.
                     59: *> \endverbatim
                     60: *
                     61: *  Arguments:
                     62: *  ==========
                     63: *
                     64: *> \verbatim
                     65: *>     Some optional parameters are bundled in the PARAMS array.  These
                     66: *>     settings determine how refinement is performed, but often the
                     67: *>     defaults are acceptable.  If the defaults are acceptable, users
                     68: *>     can pass NPARAMS = 0 which prevents the source code from accessing
                     69: *>     the PARAMS argument.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] UPLO
                     73: *> \verbatim
                     74: *>          UPLO is CHARACTER*1
                     75: *>       = 'U':  Upper triangle of A is stored;
                     76: *>       = 'L':  Lower triangle of A is stored.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] EQUED
                     80: *> \verbatim
                     81: *>          EQUED is CHARACTER*1
                     82: *>     Specifies the form of equilibration that was done to A
                     83: *>     before calling this routine. This is needed to compute
                     84: *>     the solution and error bounds correctly.
                     85: *>       = 'N':  No equilibration
                     86: *>       = 'Y':  Both row and column equilibration, i.e., A has been
                     87: *>               replaced by diag(S) * A * diag(S).
                     88: *>               The right hand side B has been changed accordingly.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] N
                     92: *> \verbatim
                     93: *>          N is INTEGER
                     94: *>     The order of the matrix A.  N >= 0.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] NRHS
                     98: *> \verbatim
                     99: *>          NRHS is INTEGER
                    100: *>     The number of right hand sides, i.e., the number of columns
                    101: *>     of the matrices B and X.  NRHS >= 0.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in] A
                    105: *> \verbatim
                    106: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                    107: *>     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
                    108: *>     upper triangular part of A contains the upper triangular part
                    109: *>     of the matrix A, and the strictly lower triangular part of A
                    110: *>     is not referenced.  If UPLO = 'L', the leading N-by-N lower
                    111: *>     triangular part of A contains the lower triangular part of
                    112: *>     the matrix A, and the strictly upper triangular part of A is
                    113: *>     not referenced.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDA
                    117: *> \verbatim
                    118: *>          LDA is INTEGER
                    119: *>     The leading dimension of the array A.  LDA >= max(1,N).
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] AF
                    123: *> \verbatim
                    124: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
                    125: *>     The triangular factor U or L from the Cholesky factorization
                    126: *>     A = U**T*U or A = L*L**T, as computed by DPOTRF.
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] LDAF
                    130: *> \verbatim
                    131: *>          LDAF is INTEGER
                    132: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[in,out] S
                    136: *> \verbatim
1.7       bertrand  137: *>          S is DOUBLE PRECISION array, dimension (N)
1.5       bertrand  138: *>     The row scale factors for A.  If EQUED = 'Y', A is multiplied on
                    139: *>     the left and right by diag(S).  S is an input argument if FACT =
                    140: *>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
                    141: *>     = 'Y', each element of S must be positive.  If S is output, each
                    142: *>     element of S is a power of the radix. If S is input, each element
                    143: *>     of S should be a power of the radix to ensure a reliable solution
                    144: *>     and error estimates. Scaling by powers of the radix does not cause
                    145: *>     rounding errors unless the result underflows or overflows.
                    146: *>     Rounding errors during scaling lead to refining with a matrix that
                    147: *>     is not equivalent to the input matrix, producing error estimates
                    148: *>     that may not be reliable.
                    149: *> \endverbatim
                    150: *>
                    151: *> \param[in] B
                    152: *> \verbatim
                    153: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    154: *>     The right hand side matrix B.
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[in] LDB
                    158: *> \verbatim
                    159: *>          LDB is INTEGER
                    160: *>     The leading dimension of the array B.  LDB >= max(1,N).
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[in,out] X
                    164: *> \verbatim
                    165: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    166: *>     On entry, the solution matrix X, as computed by DGETRS.
                    167: *>     On exit, the improved solution matrix X.
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[in] LDX
                    171: *> \verbatim
                    172: *>          LDX is INTEGER
                    173: *>     The leading dimension of the array X.  LDX >= max(1,N).
                    174: *> \endverbatim
                    175: *>
                    176: *> \param[out] RCOND
                    177: *> \verbatim
                    178: *>          RCOND is DOUBLE PRECISION
                    179: *>     Reciprocal scaled condition number.  This is an estimate of the
                    180: *>     reciprocal Skeel condition number of the matrix A after
                    181: *>     equilibration (if done).  If this is less than the machine
                    182: *>     precision (in particular, if it is zero), the matrix is singular
                    183: *>     to working precision.  Note that the error may still be small even
                    184: *>     if this number is very small and the matrix appears ill-
                    185: *>     conditioned.
                    186: *> \endverbatim
                    187: *>
                    188: *> \param[out] BERR
                    189: *> \verbatim
                    190: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    191: *>     Componentwise relative backward error.  This is the
                    192: *>     componentwise relative backward error of each solution vector X(j)
                    193: *>     (i.e., the smallest relative change in any element of A or B that
                    194: *>     makes X(j) an exact solution).
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[in] N_ERR_BNDS
                    198: *> \verbatim
                    199: *>          N_ERR_BNDS is INTEGER
                    200: *>     Number of error bounds to return for each right hand side
                    201: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
                    202: *>     ERR_BNDS_COMP below.
                    203: *> \endverbatim
                    204: *>
                    205: *> \param[out] ERR_BNDS_NORM
                    206: *> \verbatim
                    207: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    208: *>     For each right-hand side, this array contains information about
                    209: *>     various error bounds and condition numbers corresponding to the
                    210: *>     normwise relative error, which is defined as follows:
                    211: *>
                    212: *>     Normwise relative error in the ith solution vector:
                    213: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
                    214: *>            ------------------------------
                    215: *>                  max_j abs(X(j,i))
                    216: *>
                    217: *>     The array is indexed by the type of error information as described
                    218: *>     below. There currently are up to three pieces of information
                    219: *>     returned.
                    220: *>
                    221: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    222: *>     right-hand side.
                    223: *>
                    224: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
                    225: *>     three fields:
                    226: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    227: *>              reciprocal condition number is less than the threshold
                    228: *>              sqrt(n) * dlamch('Epsilon').
                    229: *>
                    230: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    231: *>              almost certainly within a factor of 10 of the true error
                    232: *>              so long as the next entry is greater than the threshold
                    233: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    234: *>              be trusted if the previous boolean is true.
                    235: *>
                    236: *>     err = 3  Reciprocal condition number: Estimated normwise
                    237: *>              reciprocal condition number.  Compared with the threshold
                    238: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
                    239: *>              estimate is "guaranteed". These reciprocal condition
                    240: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    241: *>              appropriately scaled matrix Z.
                    242: *>              Let Z = S*A, where S scales each row by a power of the
                    243: *>              radix so all absolute row sums of Z are approximately 1.
                    244: *>
                    245: *>     See Lapack Working Note 165 for further details and extra
                    246: *>     cautions.
                    247: *> \endverbatim
                    248: *>
                    249: *> \param[out] ERR_BNDS_COMP
                    250: *> \verbatim
                    251: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    252: *>     For each right-hand side, this array contains information about
                    253: *>     various error bounds and condition numbers corresponding to the
                    254: *>     componentwise relative error, which is defined as follows:
                    255: *>
                    256: *>     Componentwise relative error in the ith solution vector:
                    257: *>                    abs(XTRUE(j,i) - X(j,i))
                    258: *>             max_j ----------------------
                    259: *>                         abs(X(j,i))
                    260: *>
                    261: *>     The array is indexed by the right-hand side i (on which the
                    262: *>     componentwise relative error depends), and the type of error
                    263: *>     information as described below. There currently are up to three
                    264: *>     pieces of information returned for each right-hand side. If
                    265: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
                    266: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
                    267: *>     the first (:,N_ERR_BNDS) entries are returned.
                    268: *>
                    269: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    270: *>     right-hand side.
                    271: *>
                    272: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
                    273: *>     three fields:
                    274: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    275: *>              reciprocal condition number is less than the threshold
                    276: *>              sqrt(n) * dlamch('Epsilon').
                    277: *>
                    278: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    279: *>              almost certainly within a factor of 10 of the true error
                    280: *>              so long as the next entry is greater than the threshold
                    281: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    282: *>              be trusted if the previous boolean is true.
                    283: *>
                    284: *>     err = 3  Reciprocal condition number: Estimated componentwise
                    285: *>              reciprocal condition number.  Compared with the threshold
                    286: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
                    287: *>              estimate is "guaranteed". These reciprocal condition
                    288: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    289: *>              appropriately scaled matrix Z.
                    290: *>              Let Z = S*(A*diag(x)), where x is the solution for the
                    291: *>              current right-hand side and S scales each row of
                    292: *>              A*diag(x) by a power of the radix so all absolute row
                    293: *>              sums of Z are approximately 1.
                    294: *>
                    295: *>     See Lapack Working Note 165 for further details and extra
                    296: *>     cautions.
                    297: *> \endverbatim
                    298: *>
                    299: *> \param[in] NPARAMS
                    300: *> \verbatim
                    301: *>          NPARAMS is INTEGER
                    302: *>     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
                    303: *>     PARAMS array is never referenced and default values are used.
                    304: *> \endverbatim
                    305: *>
                    306: *> \param[in,out] PARAMS
                    307: *> \verbatim
1.7       bertrand  308: *>          PARAMS is DOUBLE PRECISION array, dimension (NPARAMS)
1.5       bertrand  309: *>     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
                    310: *>     that entry will be filled with default value used for that
                    311: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
                    312: *>     are used for higher-numbered parameters.
                    313: *>
                    314: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
                    315: *>            refinement or not.
                    316: *>         Default: 1.0D+0
                    317: *>            = 0.0 : No refinement is performed, and no error bounds are
                    318: *>                    computed.
                    319: *>            = 1.0 : Use the double-precision refinement algorithm,
                    320: *>                    possibly with doubled-single computations if the
                    321: *>                    compilation environment does not support DOUBLE
                    322: *>                    PRECISION.
                    323: *>              (other values are reserved for future use)
                    324: *>
                    325: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
                    326: *>            computations allowed for refinement.
                    327: *>         Default: 10
                    328: *>         Aggressive: Set to 100 to permit convergence using approximate
                    329: *>                     factorizations or factorizations other than LU. If
                    330: *>                     the factorization uses a technique other than
                    331: *>                     Gaussian elimination, the guarantees in
                    332: *>                     err_bnds_norm and err_bnds_comp may no longer be
                    333: *>                     trustworthy.
                    334: *>
                    335: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
                    336: *>            will attempt to find a solution with small componentwise
                    337: *>            relative error in the double-precision algorithm.  Positive
                    338: *>            is true, 0.0 is false.
                    339: *>         Default: 1.0 (attempt componentwise convergence)
                    340: *> \endverbatim
                    341: *>
                    342: *> \param[out] WORK
                    343: *> \verbatim
                    344: *>          WORK is DOUBLE PRECISION array, dimension (4*N)
                    345: *> \endverbatim
                    346: *>
                    347: *> \param[out] IWORK
                    348: *> \verbatim
                    349: *>          IWORK is INTEGER array, dimension (N)
                    350: *> \endverbatim
                    351: *>
                    352: *> \param[out] INFO
                    353: *> \verbatim
                    354: *>          INFO is INTEGER
                    355: *>       = 0:  Successful exit. The solution to every right-hand side is
                    356: *>         guaranteed.
                    357: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
                    358: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
                    359: *>         has been completed, but the factor U is exactly singular, so
                    360: *>         the solution and error bounds could not be computed. RCOND = 0
                    361: *>         is returned.
                    362: *>       = N+J: The solution corresponding to the Jth right-hand side is
                    363: *>         not guaranteed. The solutions corresponding to other right-
                    364: *>         hand sides K with K > J may not be guaranteed as well, but
                    365: *>         only the first such right-hand side is reported. If a small
                    366: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
                    367: *>         the Jth right-hand side is the first with a normwise error
                    368: *>         bound that is not guaranteed (the smallest J such
                    369: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
                    370: *>         the Jth right-hand side is the first with either a normwise or
                    371: *>         componentwise error bound that is not guaranteed (the smallest
                    372: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
                    373: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
                    374: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
                    375: *>         about all of the right-hand sides check ERR_BNDS_NORM or
                    376: *>         ERR_BNDS_COMP.
                    377: *> \endverbatim
                    378: *
                    379: *  Authors:
                    380: *  ========
                    381: *
                    382: *> \author Univ. of Tennessee 
                    383: *> \author Univ. of California Berkeley 
                    384: *> \author Univ. of Colorado Denver 
                    385: *> \author NAG Ltd. 
                    386: *
1.7       bertrand  387: *> \date April 2012
1.5       bertrand  388: *
                    389: *> \ingroup doublePOcomputational
                    390: *
                    391: *  =====================================================================
1.1       bertrand  392:       SUBROUTINE DPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B,
                    393:      $                    LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
                    394:      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
                    395:      $                    WORK, IWORK, INFO )
                    396: *
1.7       bertrand  397: *  -- LAPACK computational routine (version 3.4.1) --
1.5       bertrand  398: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    399: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.7       bertrand  400: *     April 2012
1.1       bertrand  401: *
                    402: *     .. Scalar Arguments ..
                    403:       CHARACTER          UPLO, EQUED
                    404:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
                    405:      $                   N_ERR_BNDS
                    406:       DOUBLE PRECISION   RCOND
                    407: *     ..
                    408: *     .. Array Arguments ..
                    409:       INTEGER            IWORK( * )
                    410:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    411:      $                   X( LDX, * ), WORK( * )
                    412:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
                    413:      $                   ERR_BNDS_NORM( NRHS, * ),
                    414:      $                   ERR_BNDS_COMP( NRHS, * )
                    415: *     ..
                    416: *
1.5       bertrand  417: *  ==================================================================
1.1       bertrand  418: *
                    419: *     .. Parameters ..
                    420:       DOUBLE PRECISION   ZERO, ONE
                    421:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    422:       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
                    423:       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
                    424:       DOUBLE PRECISION   DZTHRESH_DEFAULT
                    425:       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
                    426:       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
                    427:       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
                    428:       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
                    429:       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
                    430:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    431:      $                   LA_LINRX_CWISE_I
                    432:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    433:      $                   LA_LINRX_ITHRESH_I = 2 )
                    434:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    435:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    436:      $                   LA_LINRX_RCOND_I
                    437:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    438:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    439: *     ..
                    440: *     .. Local Scalars ..
                    441:       CHARACTER(1)       NORM
                    442:       LOGICAL            RCEQU
                    443:       INTEGER            J, PREC_TYPE, REF_TYPE
                    444:       INTEGER            N_NORMS
                    445:       DOUBLE PRECISION   ANORM, RCOND_TMP
                    446:       DOUBLE PRECISION   ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
                    447:       LOGICAL            IGNORE_CWISE
                    448:       INTEGER            ITHRESH
                    449:       DOUBLE PRECISION   RTHRESH, UNSTABLE_THRESH
                    450: *     ..
                    451: *     .. External Subroutines ..
                    452:       EXTERNAL           XERBLA, DPOCON, DLA_PORFSX_EXTENDED
                    453: *     ..
                    454: *     .. Intrinsic Functions ..
                    455:       INTRINSIC          MAX, SQRT
                    456: *     ..
                    457: *     .. External Functions ..
                    458:       EXTERNAL           LSAME, BLAS_FPINFO_X, ILATRANS, ILAPREC
                    459:       EXTERNAL           DLAMCH, DLANSY, DLA_PORCOND
                    460:       DOUBLE PRECISION   DLAMCH, DLANSY, DLA_PORCOND
                    461:       LOGICAL            LSAME
                    462:       INTEGER            BLAS_FPINFO_X
                    463:       INTEGER            ILATRANS, ILAPREC
                    464: *     ..
                    465: *     .. Executable Statements ..
                    466: *
                    467: *     Check the input parameters.
                    468: *
                    469:       INFO = 0
                    470:       REF_TYPE = INT( ITREF_DEFAULT )
                    471:       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
                    472:          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
                    473:             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
                    474:          ELSE
                    475:             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
                    476:          END IF
                    477:       END IF
                    478: *
                    479: *     Set default parameters.
                    480: *
                    481:       ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
                    482:       ITHRESH = INT( ITHRESH_DEFAULT )
                    483:       RTHRESH = RTHRESH_DEFAULT
                    484:       UNSTABLE_THRESH = DZTHRESH_DEFAULT
                    485:       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
                    486: *
                    487:       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
                    488:          IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
                    489:             PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
                    490:          ELSE
                    491:             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
                    492:          END IF
                    493:       END IF
                    494:       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
                    495:          IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
                    496:             IF ( IGNORE_CWISE ) THEN
                    497:                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
                    498:             ELSE
                    499:                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
                    500:             END IF
                    501:          ELSE
                    502:             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
                    503:          END IF
                    504:       END IF
                    505:       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
                    506:          N_NORMS = 0
                    507:       ELSE IF ( IGNORE_CWISE ) THEN
                    508:          N_NORMS = 1
                    509:       ELSE
                    510:          N_NORMS = 2
                    511:       END IF
                    512: *
                    513:       RCEQU = LSAME( EQUED, 'Y' )
                    514: *
                    515: *     Test input parameters.
                    516: *
                    517:       IF (.NOT.LSAME(UPLO, 'U') .AND. .NOT.LSAME(UPLO, 'L')) THEN
                    518:         INFO = -1
                    519:       ELSE IF( .NOT.RCEQU .AND. .NOT.LSAME( EQUED, 'N' ) ) THEN
                    520:         INFO = -2
                    521:       ELSE IF( N.LT.0 ) THEN
                    522:         INFO = -3
                    523:       ELSE IF( NRHS.LT.0 ) THEN
                    524:         INFO = -4
                    525:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    526:         INFO = -6
                    527:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    528:         INFO = -8
                    529:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    530:         INFO = -11
                    531:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    532:         INFO = -13
                    533:       END IF
                    534:       IF( INFO.NE.0 ) THEN
                    535:         CALL XERBLA( 'DPORFSX', -INFO )
                    536:         RETURN
                    537:       END IF
                    538: *
                    539: *     Quick return if possible.
                    540: *
                    541:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    542:          RCOND = 1.0D+0
                    543:          DO J = 1, NRHS
                    544:             BERR( J ) = 0.0D+0
                    545:             IF ( N_ERR_BNDS .GE. 1 ) THEN
                    546:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    547:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    548:             END IF
                    549:             IF ( N_ERR_BNDS .GE. 2 ) THEN
                    550:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
                    551:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
                    552:             END IF
                    553:             IF ( N_ERR_BNDS .GE. 3 ) THEN
                    554:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
                    555:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
                    556:             END IF
                    557:          END DO
                    558:          RETURN
                    559:       END IF
                    560: *
                    561: *     Default to failure.
                    562: *
                    563:       RCOND = 0.0D+0
                    564:       DO J = 1, NRHS
                    565:          BERR( J ) = 1.0D+0
                    566:          IF ( N_ERR_BNDS .GE. 1 ) THEN
                    567:             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    568:             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    569:          END IF
                    570:          IF ( N_ERR_BNDS .GE. 2 ) THEN
                    571:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    572:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    573:          END IF
                    574:          IF ( N_ERR_BNDS .GE. 3 ) THEN
                    575:             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
                    576:             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
                    577:          END IF
                    578:       END DO
                    579: *
                    580: *     Compute the norm of A and the reciprocal of the condition
                    581: *     number of A.
                    582: *
                    583:       NORM = 'I'
                    584:       ANORM = DLANSY( NORM, UPLO, N, A, LDA, WORK )
                    585:       CALL DPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK,
                    586:      $     IWORK, INFO )
                    587: *
                    588: *     Perform refinement on each right-hand side
                    589: *
                    590:       IF ( REF_TYPE .NE. 0 ) THEN
                    591: 
                    592:          PREC_TYPE = ILAPREC( 'E' )
                    593: 
                    594:          CALL DLA_PORFSX_EXTENDED( PREC_TYPE, UPLO,  N,
                    595:      $        NRHS, A, LDA, AF, LDAF, RCEQU, S, B,
                    596:      $        LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP,
                    597:      $        WORK( N+1 ), WORK( 1 ), WORK( 2*N+1 ), WORK( 1 ), RCOND,
                    598:      $        ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
                    599:      $        INFO )
                    600:       END IF
                    601: 
                    602:       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
                    603:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1 ) THEN
                    604: *
                    605: *     Compute scaled normwise condition number cond(A*C).
                    606: *
                    607:          IF ( RCEQU ) THEN
                    608:             RCOND_TMP = DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
                    609:      $           -1, S, INFO, WORK, IWORK )
                    610:          ELSE
                    611:             RCOND_TMP = DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
                    612:      $           0, S, INFO, WORK, IWORK )
                    613:          END IF
                    614:          DO J = 1, NRHS
                    615: *
                    616: *     Cap the error at 1.0.
                    617: *
                    618:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
                    619:      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
                    620:      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    621: *
                    622: *     Threshold the error (see LAWN).
                    623: *
                    624:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
                    625:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    626:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
                    627:                IF ( INFO .LE. N ) INFO = N + J
                    628:             ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
                    629:      $              THEN
                    630:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
                    631:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    632:             END IF
                    633: *
                    634: *     Save the condition number.
                    635: *
                    636:             IF (N_ERR_BNDS .GE. LA_LINRX_RCOND_I) THEN
                    637:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
                    638:             END IF
                    639:          END DO
                    640:       END IF
                    641: 
                    642:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
                    643: *
                    644: *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
                    645: *     each right-hand side using the current solution as an estimate of
                    646: *     the true solution.  If the componentwise error estimate is too
                    647: *     large, then the solution is a lousy estimate of truth and the
                    648: *     estimated RCOND may be too optimistic.  To avoid misleading users,
                    649: *     the inverse condition number is set to 0.0 when the estimated
                    650: *     cwise error is at least CWISE_WRONG.
                    651: *
                    652:          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
                    653:          DO J = 1, NRHS
                    654:             IF (ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
                    655:      $     THEN
                    656:                RCOND_TMP = DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF, 1,
                    657:      $              X( 1, J ), INFO, WORK, IWORK )
                    658:             ELSE
                    659:                RCOND_TMP = 0.0D+0
                    660:             END IF
                    661: *
                    662: *     Cap the error at 1.0.
                    663: *
                    664:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
                    665:      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
                    666:      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    667: *
                    668: *     Threshold the error (see LAWN).
                    669: *
                    670:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
                    671:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    672:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
                    673:                IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
                    674:      $              .AND. INFO.LT.N + J ) INFO = N + J
                    675:             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
                    676:      $              .LT. ERR_LBND ) THEN
                    677:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
                    678:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    679:             END IF
                    680: *
                    681: *     Save the condition number.
                    682: *
                    683:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
                    684:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
                    685:             END IF
                    686: 
                    687:          END DO
                    688:       END IF
                    689: *
                    690:       RETURN
                    691: *
                    692: *     End of DPORFSX
                    693: *
                    694:       END

CVSweb interface <joel.bertrand@systella.fr>