![]() ![]() | ![]() |
Mise à jour de lapack vers la version 3.3.0.
1: SUBROUTINE DPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, 2: $ LDX, FERR, BERR, WORK, IWORK, INFO ) 3: * 4: * -- LAPACK routine (version 3.2) -- 5: * -- LAPACK is a software package provided by Univ. of Tennessee, -- 6: * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 7: * November 2006 8: * 9: * Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. 10: * 11: * .. Scalar Arguments .. 12: CHARACTER UPLO 13: INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS 14: * .. 15: * .. Array Arguments .. 16: INTEGER IWORK( * ) 17: DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ), 18: $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * ) 19: * .. 20: * 21: * Purpose 22: * ======= 23: * 24: * DPORFS improves the computed solution to a system of linear 25: * equations when the coefficient matrix is symmetric positive definite, 26: * and provides error bounds and backward error estimates for the 27: * solution. 28: * 29: * Arguments 30: * ========= 31: * 32: * UPLO (input) CHARACTER*1 33: * = 'U': Upper triangle of A is stored; 34: * = 'L': Lower triangle of A is stored. 35: * 36: * N (input) INTEGER 37: * The order of the matrix A. N >= 0. 38: * 39: * NRHS (input) INTEGER 40: * The number of right hand sides, i.e., the number of columns 41: * of the matrices B and X. NRHS >= 0. 42: * 43: * A (input) DOUBLE PRECISION array, dimension (LDA,N) 44: * The symmetric matrix A. If UPLO = 'U', the leading N-by-N 45: * upper triangular part of A contains the upper triangular part 46: * of the matrix A, and the strictly lower triangular part of A 47: * is not referenced. If UPLO = 'L', the leading N-by-N lower 48: * triangular part of A contains the lower triangular part of 49: * the matrix A, and the strictly upper triangular part of A is 50: * not referenced. 51: * 52: * LDA (input) INTEGER 53: * The leading dimension of the array A. LDA >= max(1,N). 54: * 55: * AF (input) DOUBLE PRECISION array, dimension (LDAF,N) 56: * The triangular factor U or L from the Cholesky factorization 57: * A = U**T*U or A = L*L**T, as computed by DPOTRF. 58: * 59: * LDAF (input) INTEGER 60: * The leading dimension of the array AF. LDAF >= max(1,N). 61: * 62: * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) 63: * The right hand side matrix B. 64: * 65: * LDB (input) INTEGER 66: * The leading dimension of the array B. LDB >= max(1,N). 67: * 68: * X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) 69: * On entry, the solution matrix X, as computed by DPOTRS. 70: * On exit, the improved solution matrix X. 71: * 72: * LDX (input) INTEGER 73: * The leading dimension of the array X. LDX >= max(1,N). 74: * 75: * FERR (output) DOUBLE PRECISION array, dimension (NRHS) 76: * The estimated forward error bound for each solution vector 77: * X(j) (the j-th column of the solution matrix X). 78: * If XTRUE is the true solution corresponding to X(j), FERR(j) 79: * is an estimated upper bound for the magnitude of the largest 80: * element in (X(j) - XTRUE) divided by the magnitude of the 81: * largest element in X(j). The estimate is as reliable as 82: * the estimate for RCOND, and is almost always a slight 83: * overestimate of the true error. 84: * 85: * BERR (output) DOUBLE PRECISION array, dimension (NRHS) 86: * The componentwise relative backward error of each solution 87: * vector X(j) (i.e., the smallest relative change in 88: * any element of A or B that makes X(j) an exact solution). 89: * 90: * WORK (workspace) DOUBLE PRECISION array, dimension (3*N) 91: * 92: * IWORK (workspace) INTEGER array, dimension (N) 93: * 94: * INFO (output) INTEGER 95: * = 0: successful exit 96: * < 0: if INFO = -i, the i-th argument had an illegal value 97: * 98: * Internal Parameters 99: * =================== 100: * 101: * ITMAX is the maximum number of steps of iterative refinement. 102: * 103: * ===================================================================== 104: * 105: * .. Parameters .. 106: INTEGER ITMAX 107: PARAMETER ( ITMAX = 5 ) 108: DOUBLE PRECISION ZERO 109: PARAMETER ( ZERO = 0.0D+0 ) 110: DOUBLE PRECISION ONE 111: PARAMETER ( ONE = 1.0D+0 ) 112: DOUBLE PRECISION TWO 113: PARAMETER ( TWO = 2.0D+0 ) 114: DOUBLE PRECISION THREE 115: PARAMETER ( THREE = 3.0D+0 ) 116: * .. 117: * .. Local Scalars .. 118: LOGICAL UPPER 119: INTEGER COUNT, I, J, K, KASE, NZ 120: DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK 121: * .. 122: * .. Local Arrays .. 123: INTEGER ISAVE( 3 ) 124: * .. 125: * .. External Subroutines .. 126: EXTERNAL DAXPY, DCOPY, DLACN2, DPOTRS, DSYMV, XERBLA 127: * .. 128: * .. Intrinsic Functions .. 129: INTRINSIC ABS, MAX 130: * .. 131: * .. External Functions .. 132: LOGICAL LSAME 133: DOUBLE PRECISION DLAMCH 134: EXTERNAL LSAME, DLAMCH 135: * .. 136: * .. Executable Statements .. 137: * 138: * Test the input parameters. 139: * 140: INFO = 0 141: UPPER = LSAME( UPLO, 'U' ) 142: IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 143: INFO = -1 144: ELSE IF( N.LT.0 ) THEN 145: INFO = -2 146: ELSE IF( NRHS.LT.0 ) THEN 147: INFO = -3 148: ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 149: INFO = -5 150: ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN 151: INFO = -7 152: ELSE IF( LDB.LT.MAX( 1, N ) ) THEN 153: INFO = -9 154: ELSE IF( LDX.LT.MAX( 1, N ) ) THEN 155: INFO = -11 156: END IF 157: IF( INFO.NE.0 ) THEN 158: CALL XERBLA( 'DPORFS', -INFO ) 159: RETURN 160: END IF 161: * 162: * Quick return if possible 163: * 164: IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN 165: DO 10 J = 1, NRHS 166: FERR( J ) = ZERO 167: BERR( J ) = ZERO 168: 10 CONTINUE 169: RETURN 170: END IF 171: * 172: * NZ = maximum number of nonzero elements in each row of A, plus 1 173: * 174: NZ = N + 1 175: EPS = DLAMCH( 'Epsilon' ) 176: SAFMIN = DLAMCH( 'Safe minimum' ) 177: SAFE1 = NZ*SAFMIN 178: SAFE2 = SAFE1 / EPS 179: * 180: * Do for each right hand side 181: * 182: DO 140 J = 1, NRHS 183: * 184: COUNT = 1 185: LSTRES = THREE 186: 20 CONTINUE 187: * 188: * Loop until stopping criterion is satisfied. 189: * 190: * Compute residual R = B - A * X 191: * 192: CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 ) 193: CALL DSYMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE, 194: $ WORK( N+1 ), 1 ) 195: * 196: * Compute componentwise relative backward error from formula 197: * 198: * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) 199: * 200: * where abs(Z) is the componentwise absolute value of the matrix 201: * or vector Z. If the i-th component of the denominator is less 202: * than SAFE2, then SAFE1 is added to the i-th components of the 203: * numerator and denominator before dividing. 204: * 205: DO 30 I = 1, N 206: WORK( I ) = ABS( B( I, J ) ) 207: 30 CONTINUE 208: * 209: * Compute abs(A)*abs(X) + abs(B). 210: * 211: IF( UPPER ) THEN 212: DO 50 K = 1, N 213: S = ZERO 214: XK = ABS( X( K, J ) ) 215: DO 40 I = 1, K - 1 216: WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK 217: S = S + ABS( A( I, K ) )*ABS( X( I, J ) ) 218: 40 CONTINUE 219: WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK + S 220: 50 CONTINUE 221: ELSE 222: DO 70 K = 1, N 223: S = ZERO 224: XK = ABS( X( K, J ) ) 225: WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK 226: DO 60 I = K + 1, N 227: WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK 228: S = S + ABS( A( I, K ) )*ABS( X( I, J ) ) 229: 60 CONTINUE 230: WORK( K ) = WORK( K ) + S 231: 70 CONTINUE 232: END IF 233: S = ZERO 234: DO 80 I = 1, N 235: IF( WORK( I ).GT.SAFE2 ) THEN 236: S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) ) 237: ELSE 238: S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) / 239: $ ( WORK( I )+SAFE1 ) ) 240: END IF 241: 80 CONTINUE 242: BERR( J ) = S 243: * 244: * Test stopping criterion. Continue iterating if 245: * 1) The residual BERR(J) is larger than machine epsilon, and 246: * 2) BERR(J) decreased by at least a factor of 2 during the 247: * last iteration, and 248: * 3) At most ITMAX iterations tried. 249: * 250: IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND. 251: $ COUNT.LE.ITMAX ) THEN 252: * 253: * Update solution and try again. 254: * 255: CALL DPOTRS( UPLO, N, 1, AF, LDAF, WORK( N+1 ), N, INFO ) 256: CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 ) 257: LSTRES = BERR( J ) 258: COUNT = COUNT + 1 259: GO TO 20 260: END IF 261: * 262: * Bound error from formula 263: * 264: * norm(X - XTRUE) / norm(X) .le. FERR = 265: * norm( abs(inv(A))* 266: * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) 267: * 268: * where 269: * norm(Z) is the magnitude of the largest component of Z 270: * inv(A) is the inverse of A 271: * abs(Z) is the componentwise absolute value of the matrix or 272: * vector Z 273: * NZ is the maximum number of nonzeros in any row of A, plus 1 274: * EPS is machine epsilon 275: * 276: * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) 277: * is incremented by SAFE1 if the i-th component of 278: * abs(A)*abs(X) + abs(B) is less than SAFE2. 279: * 280: * Use DLACN2 to estimate the infinity-norm of the matrix 281: * inv(A) * diag(W), 282: * where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) 283: * 284: DO 90 I = 1, N 285: IF( WORK( I ).GT.SAFE2 ) THEN 286: WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) 287: ELSE 288: WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1 289: END IF 290: 90 CONTINUE 291: * 292: KASE = 0 293: 100 CONTINUE 294: CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ), 295: $ KASE, ISAVE ) 296: IF( KASE.NE.0 ) THEN 297: IF( KASE.EQ.1 ) THEN 298: * 299: * Multiply by diag(W)*inv(A'). 300: * 301: CALL DPOTRS( UPLO, N, 1, AF, LDAF, WORK( N+1 ), N, INFO ) 302: DO 110 I = 1, N 303: WORK( N+I ) = WORK( I )*WORK( N+I ) 304: 110 CONTINUE 305: ELSE IF( KASE.EQ.2 ) THEN 306: * 307: * Multiply by inv(A)*diag(W). 308: * 309: DO 120 I = 1, N 310: WORK( N+I ) = WORK( I )*WORK( N+I ) 311: 120 CONTINUE 312: CALL DPOTRS( UPLO, N, 1, AF, LDAF, WORK( N+1 ), N, INFO ) 313: END IF 314: GO TO 100 315: END IF 316: * 317: * Normalize error. 318: * 319: LSTRES = ZERO 320: DO 130 I = 1, N 321: LSTRES = MAX( LSTRES, ABS( X( I, J ) ) ) 322: 130 CONTINUE 323: IF( LSTRES.NE.ZERO ) 324: $ FERR( J ) = FERR( J ) / LSTRES 325: * 326: 140 CONTINUE 327: * 328: RETURN 329: * 330: * End of DPORFS 331: * 332: END