Annotation of rpl/lapack/lapack/dporfs.f, revision 1.8

1.1       bertrand    1:       SUBROUTINE DPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X,
                      2:      $                   LDX, FERR, BERR, WORK, IWORK, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          UPLO
                     13:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IWORK( * )
                     17:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     18:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  DPORFS improves the computed solution to a system of linear
                     25: *  equations when the coefficient matrix is symmetric positive definite,
                     26: *  and provides error bounds and backward error estimates for the
                     27: *  solution.
                     28: *
                     29: *  Arguments
                     30: *  =========
                     31: *
                     32: *  UPLO    (input) CHARACTER*1
                     33: *          = 'U':  Upper triangle of A is stored;
                     34: *          = 'L':  Lower triangle of A is stored.
                     35: *
                     36: *  N       (input) INTEGER
                     37: *          The order of the matrix A.  N >= 0.
                     38: *
                     39: *  NRHS    (input) INTEGER
                     40: *          The number of right hand sides, i.e., the number of columns
                     41: *          of the matrices B and X.  NRHS >= 0.
                     42: *
                     43: *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
                     44: *          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
                     45: *          upper triangular part of A contains the upper triangular part
                     46: *          of the matrix A, and the strictly lower triangular part of A
                     47: *          is not referenced.  If UPLO = 'L', the leading N-by-N lower
                     48: *          triangular part of A contains the lower triangular part of
                     49: *          the matrix A, and the strictly upper triangular part of A is
                     50: *          not referenced.
                     51: *
                     52: *  LDA     (input) INTEGER
                     53: *          The leading dimension of the array A.  LDA >= max(1,N).
                     54: *
                     55: *  AF      (input) DOUBLE PRECISION array, dimension (LDAF,N)
                     56: *          The triangular factor U or L from the Cholesky factorization
                     57: *          A = U**T*U or A = L*L**T, as computed by DPOTRF.
                     58: *
                     59: *  LDAF    (input) INTEGER
                     60: *          The leading dimension of the array AF.  LDAF >= max(1,N).
                     61: *
                     62: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
                     63: *          The right hand side matrix B.
                     64: *
                     65: *  LDB     (input) INTEGER
                     66: *          The leading dimension of the array B.  LDB >= max(1,N).
                     67: *
                     68: *  X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
                     69: *          On entry, the solution matrix X, as computed by DPOTRS.
                     70: *          On exit, the improved solution matrix X.
                     71: *
                     72: *  LDX     (input) INTEGER
                     73: *          The leading dimension of the array X.  LDX >= max(1,N).
                     74: *
                     75: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     76: *          The estimated forward error bound for each solution vector
                     77: *          X(j) (the j-th column of the solution matrix X).
                     78: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                     79: *          is an estimated upper bound for the magnitude of the largest
                     80: *          element in (X(j) - XTRUE) divided by the magnitude of the
                     81: *          largest element in X(j).  The estimate is as reliable as
                     82: *          the estimate for RCOND, and is almost always a slight
                     83: *          overestimate of the true error.
                     84: *
                     85: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     86: *          The componentwise relative backward error of each solution
                     87: *          vector X(j) (i.e., the smallest relative change in
                     88: *          any element of A or B that makes X(j) an exact solution).
                     89: *
                     90: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
                     91: *
                     92: *  IWORK   (workspace) INTEGER array, dimension (N)
                     93: *
                     94: *  INFO    (output) INTEGER
                     95: *          = 0:  successful exit
                     96: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     97: *
                     98: *  Internal Parameters
                     99: *  ===================
                    100: *
                    101: *  ITMAX is the maximum number of steps of iterative refinement.
                    102: *
                    103: *  =====================================================================
                    104: *
                    105: *     .. Parameters ..
                    106:       INTEGER            ITMAX
                    107:       PARAMETER          ( ITMAX = 5 )
                    108:       DOUBLE PRECISION   ZERO
                    109:       PARAMETER          ( ZERO = 0.0D+0 )
                    110:       DOUBLE PRECISION   ONE
                    111:       PARAMETER          ( ONE = 1.0D+0 )
                    112:       DOUBLE PRECISION   TWO
                    113:       PARAMETER          ( TWO = 2.0D+0 )
                    114:       DOUBLE PRECISION   THREE
                    115:       PARAMETER          ( THREE = 3.0D+0 )
                    116: *     ..
                    117: *     .. Local Scalars ..
                    118:       LOGICAL            UPPER
                    119:       INTEGER            COUNT, I, J, K, KASE, NZ
                    120:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    121: *     ..
                    122: *     .. Local Arrays ..
                    123:       INTEGER            ISAVE( 3 )
                    124: *     ..
                    125: *     .. External Subroutines ..
                    126:       EXTERNAL           DAXPY, DCOPY, DLACN2, DPOTRS, DSYMV, XERBLA
                    127: *     ..
                    128: *     .. Intrinsic Functions ..
                    129:       INTRINSIC          ABS, MAX
                    130: *     ..
                    131: *     .. External Functions ..
                    132:       LOGICAL            LSAME
                    133:       DOUBLE PRECISION   DLAMCH
                    134:       EXTERNAL           LSAME, DLAMCH
                    135: *     ..
                    136: *     .. Executable Statements ..
                    137: *
                    138: *     Test the input parameters.
                    139: *
                    140:       INFO = 0
                    141:       UPPER = LSAME( UPLO, 'U' )
                    142:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    143:          INFO = -1
                    144:       ELSE IF( N.LT.0 ) THEN
                    145:          INFO = -2
                    146:       ELSE IF( NRHS.LT.0 ) THEN
                    147:          INFO = -3
                    148:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    149:          INFO = -5
                    150:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    151:          INFO = -7
                    152:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    153:          INFO = -9
                    154:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    155:          INFO = -11
                    156:       END IF
                    157:       IF( INFO.NE.0 ) THEN
                    158:          CALL XERBLA( 'DPORFS', -INFO )
                    159:          RETURN
                    160:       END IF
                    161: *
                    162: *     Quick return if possible
                    163: *
                    164:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    165:          DO 10 J = 1, NRHS
                    166:             FERR( J ) = ZERO
                    167:             BERR( J ) = ZERO
                    168:    10    CONTINUE
                    169:          RETURN
                    170:       END IF
                    171: *
                    172: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    173: *
                    174:       NZ = N + 1
                    175:       EPS = DLAMCH( 'Epsilon' )
                    176:       SAFMIN = DLAMCH( 'Safe minimum' )
                    177:       SAFE1 = NZ*SAFMIN
                    178:       SAFE2 = SAFE1 / EPS
                    179: *
                    180: *     Do for each right hand side
                    181: *
                    182:       DO 140 J = 1, NRHS
                    183: *
                    184:          COUNT = 1
                    185:          LSTRES = THREE
                    186:    20    CONTINUE
                    187: *
                    188: *        Loop until stopping criterion is satisfied.
                    189: *
                    190: *        Compute residual R = B - A * X
                    191: *
                    192:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
                    193:          CALL DSYMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE,
                    194:      $               WORK( N+1 ), 1 )
                    195: *
                    196: *        Compute componentwise relative backward error from formula
                    197: *
                    198: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    199: *
                    200: *        where abs(Z) is the componentwise absolute value of the matrix
                    201: *        or vector Z.  If the i-th component of the denominator is less
                    202: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    203: *        numerator and denominator before dividing.
                    204: *
                    205:          DO 30 I = 1, N
                    206:             WORK( I ) = ABS( B( I, J ) )
                    207:    30    CONTINUE
                    208: *
                    209: *        Compute abs(A)*abs(X) + abs(B).
                    210: *
                    211:          IF( UPPER ) THEN
                    212:             DO 50 K = 1, N
                    213:                S = ZERO
                    214:                XK = ABS( X( K, J ) )
                    215:                DO 40 I = 1, K - 1
                    216:                   WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
                    217:                   S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
                    218:    40          CONTINUE
                    219:                WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK + S
                    220:    50       CONTINUE
                    221:          ELSE
                    222:             DO 70 K = 1, N
                    223:                S = ZERO
                    224:                XK = ABS( X( K, J ) )
                    225:                WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK
                    226:                DO 60 I = K + 1, N
                    227:                   WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
                    228:                   S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
                    229:    60          CONTINUE
                    230:                WORK( K ) = WORK( K ) + S
                    231:    70       CONTINUE
                    232:          END IF
                    233:          S = ZERO
                    234:          DO 80 I = 1, N
                    235:             IF( WORK( I ).GT.SAFE2 ) THEN
                    236:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
                    237:             ELSE
                    238:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
                    239:      $             ( WORK( I )+SAFE1 ) )
                    240:             END IF
                    241:    80    CONTINUE
                    242:          BERR( J ) = S
                    243: *
                    244: *        Test stopping criterion. Continue iterating if
                    245: *           1) The residual BERR(J) is larger than machine epsilon, and
                    246: *           2) BERR(J) decreased by at least a factor of 2 during the
                    247: *              last iteration, and
                    248: *           3) At most ITMAX iterations tried.
                    249: *
                    250:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    251:      $       COUNT.LE.ITMAX ) THEN
                    252: *
                    253: *           Update solution and try again.
                    254: *
                    255:             CALL DPOTRS( UPLO, N, 1, AF, LDAF, WORK( N+1 ), N, INFO )
                    256:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
                    257:             LSTRES = BERR( J )
                    258:             COUNT = COUNT + 1
                    259:             GO TO 20
                    260:          END IF
                    261: *
                    262: *        Bound error from formula
                    263: *
                    264: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    265: *        norm( abs(inv(A))*
                    266: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    267: *
                    268: *        where
                    269: *          norm(Z) is the magnitude of the largest component of Z
                    270: *          inv(A) is the inverse of A
                    271: *          abs(Z) is the componentwise absolute value of the matrix or
                    272: *             vector Z
                    273: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    274: *          EPS is machine epsilon
                    275: *
                    276: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    277: *        is incremented by SAFE1 if the i-th component of
                    278: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    279: *
                    280: *        Use DLACN2 to estimate the infinity-norm of the matrix
                    281: *           inv(A) * diag(W),
                    282: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
                    283: *
                    284:          DO 90 I = 1, N
                    285:             IF( WORK( I ).GT.SAFE2 ) THEN
                    286:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
                    287:             ELSE
                    288:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
                    289:             END IF
                    290:    90    CONTINUE
                    291: *
                    292:          KASE = 0
                    293:   100    CONTINUE
                    294:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
                    295:      $                KASE, ISAVE )
                    296:          IF( KASE.NE.0 ) THEN
                    297:             IF( KASE.EQ.1 ) THEN
                    298: *
1.8     ! bertrand  299: *              Multiply by diag(W)*inv(A**T).
1.1       bertrand  300: *
                    301:                CALL DPOTRS( UPLO, N, 1, AF, LDAF, WORK( N+1 ), N, INFO )
                    302:                DO 110 I = 1, N
                    303:                   WORK( N+I ) = WORK( I )*WORK( N+I )
                    304:   110          CONTINUE
                    305:             ELSE IF( KASE.EQ.2 ) THEN
                    306: *
                    307: *              Multiply by inv(A)*diag(W).
                    308: *
                    309:                DO 120 I = 1, N
                    310:                   WORK( N+I ) = WORK( I )*WORK( N+I )
                    311:   120          CONTINUE
                    312:                CALL DPOTRS( UPLO, N, 1, AF, LDAF, WORK( N+1 ), N, INFO )
                    313:             END IF
                    314:             GO TO 100
                    315:          END IF
                    316: *
                    317: *        Normalize error.
                    318: *
                    319:          LSTRES = ZERO
                    320:          DO 130 I = 1, N
                    321:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
                    322:   130    CONTINUE
                    323:          IF( LSTRES.NE.ZERO )
                    324:      $      FERR( J ) = FERR( J ) / LSTRES
                    325: *
                    326:   140 CONTINUE
                    327: *
                    328:       RETURN
                    329: *
                    330: *     End of DPORFS
                    331: *
                    332:       END

CVSweb interface <joel.bertrand@systella.fr>