Annotation of rpl/lapack/lapack/dporfs.f, revision 1.16

1.9       bertrand    1: *> \brief \b DPORFS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DPORFS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dporfs.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dporfs.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dporfs.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X,
                     22: *                          LDX, FERR, BERR, WORK, IWORK, INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IWORK( * )
                     30: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     31: *      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                     32: *       ..
1.15      bertrand   33: *
1.9       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> DPORFS improves the computed solution to a system of linear
                     41: *> equations when the coefficient matrix is symmetric positive definite,
                     42: *> and provides error bounds and backward error estimates for the
                     43: *> solution.
                     44: *> \endverbatim
                     45: *
                     46: *  Arguments:
                     47: *  ==========
                     48: *
                     49: *> \param[in] UPLO
                     50: *> \verbatim
                     51: *>          UPLO is CHARACTER*1
                     52: *>          = 'U':  Upper triangle of A is stored;
                     53: *>          = 'L':  Lower triangle of A is stored.
                     54: *> \endverbatim
                     55: *>
                     56: *> \param[in] N
                     57: *> \verbatim
                     58: *>          N is INTEGER
                     59: *>          The order of the matrix A.  N >= 0.
                     60: *> \endverbatim
                     61: *>
                     62: *> \param[in] NRHS
                     63: *> \verbatim
                     64: *>          NRHS is INTEGER
                     65: *>          The number of right hand sides, i.e., the number of columns
                     66: *>          of the matrices B and X.  NRHS >= 0.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] A
                     70: *> \verbatim
                     71: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     72: *>          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
                     73: *>          upper triangular part of A contains the upper triangular part
                     74: *>          of the matrix A, and the strictly lower triangular part of A
                     75: *>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
                     76: *>          triangular part of A contains the lower triangular part of
                     77: *>          the matrix A, and the strictly upper triangular part of A is
                     78: *>          not referenced.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] LDA
                     82: *> \verbatim
                     83: *>          LDA is INTEGER
                     84: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in] AF
                     88: *> \verbatim
                     89: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
                     90: *>          The triangular factor U or L from the Cholesky factorization
                     91: *>          A = U**T*U or A = L*L**T, as computed by DPOTRF.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] LDAF
                     95: *> \verbatim
                     96: *>          LDAF is INTEGER
                     97: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] B
                    101: *> \verbatim
                    102: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    103: *>          The right hand side matrix B.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in] LDB
                    107: *> \verbatim
                    108: *>          LDB is INTEGER
                    109: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in,out] X
                    113: *> \verbatim
                    114: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    115: *>          On entry, the solution matrix X, as computed by DPOTRS.
                    116: *>          On exit, the improved solution matrix X.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[in] LDX
                    120: *> \verbatim
                    121: *>          LDX is INTEGER
                    122: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[out] FERR
                    126: *> \verbatim
                    127: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    128: *>          The estimated forward error bound for each solution vector
                    129: *>          X(j) (the j-th column of the solution matrix X).
                    130: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    131: *>          is an estimated upper bound for the magnitude of the largest
                    132: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    133: *>          largest element in X(j).  The estimate is as reliable as
                    134: *>          the estimate for RCOND, and is almost always a slight
                    135: *>          overestimate of the true error.
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[out] BERR
                    139: *> \verbatim
                    140: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    141: *>          The componentwise relative backward error of each solution
                    142: *>          vector X(j) (i.e., the smallest relative change in
                    143: *>          any element of A or B that makes X(j) an exact solution).
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[out] WORK
                    147: *> \verbatim
                    148: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
                    149: *> \endverbatim
                    150: *>
                    151: *> \param[out] IWORK
                    152: *> \verbatim
                    153: *>          IWORK is INTEGER array, dimension (N)
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[out] INFO
                    157: *> \verbatim
                    158: *>          INFO is INTEGER
                    159: *>          = 0:  successful exit
                    160: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    161: *> \endverbatim
                    162: *
                    163: *> \par Internal Parameters:
                    164: *  =========================
                    165: *>
                    166: *> \verbatim
                    167: *>  ITMAX is the maximum number of steps of iterative refinement.
                    168: *> \endverbatim
                    169: *
                    170: *  Authors:
                    171: *  ========
                    172: *
1.15      bertrand  173: *> \author Univ. of Tennessee
                    174: *> \author Univ. of California Berkeley
                    175: *> \author Univ. of Colorado Denver
                    176: *> \author NAG Ltd.
1.9       bertrand  177: *
1.15      bertrand  178: *> \date December 2016
1.9       bertrand  179: *
                    180: *> \ingroup doublePOcomputational
                    181: *
                    182: *  =====================================================================
1.1       bertrand  183:       SUBROUTINE DPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X,
                    184:      $                   LDX, FERR, BERR, WORK, IWORK, INFO )
                    185: *
1.15      bertrand  186: *  -- LAPACK computational routine (version 3.7.0) --
1.1       bertrand  187: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    188: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.15      bertrand  189: *     December 2016
1.1       bertrand  190: *
                    191: *     .. Scalar Arguments ..
                    192:       CHARACTER          UPLO
                    193:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                    194: *     ..
                    195: *     .. Array Arguments ..
                    196:       INTEGER            IWORK( * )
                    197:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    198:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                    199: *     ..
                    200: *
                    201: *  =====================================================================
                    202: *
                    203: *     .. Parameters ..
                    204:       INTEGER            ITMAX
                    205:       PARAMETER          ( ITMAX = 5 )
                    206:       DOUBLE PRECISION   ZERO
                    207:       PARAMETER          ( ZERO = 0.0D+0 )
                    208:       DOUBLE PRECISION   ONE
                    209:       PARAMETER          ( ONE = 1.0D+0 )
                    210:       DOUBLE PRECISION   TWO
                    211:       PARAMETER          ( TWO = 2.0D+0 )
                    212:       DOUBLE PRECISION   THREE
                    213:       PARAMETER          ( THREE = 3.0D+0 )
                    214: *     ..
                    215: *     .. Local Scalars ..
                    216:       LOGICAL            UPPER
                    217:       INTEGER            COUNT, I, J, K, KASE, NZ
                    218:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    219: *     ..
                    220: *     .. Local Arrays ..
                    221:       INTEGER            ISAVE( 3 )
                    222: *     ..
                    223: *     .. External Subroutines ..
                    224:       EXTERNAL           DAXPY, DCOPY, DLACN2, DPOTRS, DSYMV, XERBLA
                    225: *     ..
                    226: *     .. Intrinsic Functions ..
                    227:       INTRINSIC          ABS, MAX
                    228: *     ..
                    229: *     .. External Functions ..
                    230:       LOGICAL            LSAME
                    231:       DOUBLE PRECISION   DLAMCH
                    232:       EXTERNAL           LSAME, DLAMCH
                    233: *     ..
                    234: *     .. Executable Statements ..
                    235: *
                    236: *     Test the input parameters.
                    237: *
                    238:       INFO = 0
                    239:       UPPER = LSAME( UPLO, 'U' )
                    240:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    241:          INFO = -1
                    242:       ELSE IF( N.LT.0 ) THEN
                    243:          INFO = -2
                    244:       ELSE IF( NRHS.LT.0 ) THEN
                    245:          INFO = -3
                    246:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    247:          INFO = -5
                    248:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    249:          INFO = -7
                    250:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    251:          INFO = -9
                    252:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    253:          INFO = -11
                    254:       END IF
                    255:       IF( INFO.NE.0 ) THEN
                    256:          CALL XERBLA( 'DPORFS', -INFO )
                    257:          RETURN
                    258:       END IF
                    259: *
                    260: *     Quick return if possible
                    261: *
                    262:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    263:          DO 10 J = 1, NRHS
                    264:             FERR( J ) = ZERO
                    265:             BERR( J ) = ZERO
                    266:    10    CONTINUE
                    267:          RETURN
                    268:       END IF
                    269: *
                    270: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    271: *
                    272:       NZ = N + 1
                    273:       EPS = DLAMCH( 'Epsilon' )
                    274:       SAFMIN = DLAMCH( 'Safe minimum' )
                    275:       SAFE1 = NZ*SAFMIN
                    276:       SAFE2 = SAFE1 / EPS
                    277: *
                    278: *     Do for each right hand side
                    279: *
                    280:       DO 140 J = 1, NRHS
                    281: *
                    282:          COUNT = 1
                    283:          LSTRES = THREE
                    284:    20    CONTINUE
                    285: *
                    286: *        Loop until stopping criterion is satisfied.
                    287: *
                    288: *        Compute residual R = B - A * X
                    289: *
                    290:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
                    291:          CALL DSYMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE,
                    292:      $               WORK( N+1 ), 1 )
                    293: *
                    294: *        Compute componentwise relative backward error from formula
                    295: *
                    296: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    297: *
                    298: *        where abs(Z) is the componentwise absolute value of the matrix
                    299: *        or vector Z.  If the i-th component of the denominator is less
                    300: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    301: *        numerator and denominator before dividing.
                    302: *
                    303:          DO 30 I = 1, N
                    304:             WORK( I ) = ABS( B( I, J ) )
                    305:    30    CONTINUE
                    306: *
                    307: *        Compute abs(A)*abs(X) + abs(B).
                    308: *
                    309:          IF( UPPER ) THEN
                    310:             DO 50 K = 1, N
                    311:                S = ZERO
                    312:                XK = ABS( X( K, J ) )
                    313:                DO 40 I = 1, K - 1
                    314:                   WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
                    315:                   S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
                    316:    40          CONTINUE
                    317:                WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK + S
                    318:    50       CONTINUE
                    319:          ELSE
                    320:             DO 70 K = 1, N
                    321:                S = ZERO
                    322:                XK = ABS( X( K, J ) )
                    323:                WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK
                    324:                DO 60 I = K + 1, N
                    325:                   WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
                    326:                   S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
                    327:    60          CONTINUE
                    328:                WORK( K ) = WORK( K ) + S
                    329:    70       CONTINUE
                    330:          END IF
                    331:          S = ZERO
                    332:          DO 80 I = 1, N
                    333:             IF( WORK( I ).GT.SAFE2 ) THEN
                    334:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
                    335:             ELSE
                    336:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
                    337:      $             ( WORK( I )+SAFE1 ) )
                    338:             END IF
                    339:    80    CONTINUE
                    340:          BERR( J ) = S
                    341: *
                    342: *        Test stopping criterion. Continue iterating if
                    343: *           1) The residual BERR(J) is larger than machine epsilon, and
                    344: *           2) BERR(J) decreased by at least a factor of 2 during the
                    345: *              last iteration, and
                    346: *           3) At most ITMAX iterations tried.
                    347: *
                    348:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    349:      $       COUNT.LE.ITMAX ) THEN
                    350: *
                    351: *           Update solution and try again.
                    352: *
                    353:             CALL DPOTRS( UPLO, N, 1, AF, LDAF, WORK( N+1 ), N, INFO )
                    354:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
                    355:             LSTRES = BERR( J )
                    356:             COUNT = COUNT + 1
                    357:             GO TO 20
                    358:          END IF
                    359: *
                    360: *        Bound error from formula
                    361: *
                    362: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    363: *        norm( abs(inv(A))*
                    364: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    365: *
                    366: *        where
                    367: *          norm(Z) is the magnitude of the largest component of Z
                    368: *          inv(A) is the inverse of A
                    369: *          abs(Z) is the componentwise absolute value of the matrix or
                    370: *             vector Z
                    371: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    372: *          EPS is machine epsilon
                    373: *
                    374: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    375: *        is incremented by SAFE1 if the i-th component of
                    376: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    377: *
                    378: *        Use DLACN2 to estimate the infinity-norm of the matrix
                    379: *           inv(A) * diag(W),
                    380: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
                    381: *
                    382:          DO 90 I = 1, N
                    383:             IF( WORK( I ).GT.SAFE2 ) THEN
                    384:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
                    385:             ELSE
                    386:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
                    387:             END IF
                    388:    90    CONTINUE
                    389: *
                    390:          KASE = 0
                    391:   100    CONTINUE
                    392:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
                    393:      $                KASE, ISAVE )
                    394:          IF( KASE.NE.0 ) THEN
                    395:             IF( KASE.EQ.1 ) THEN
                    396: *
1.8       bertrand  397: *              Multiply by diag(W)*inv(A**T).
1.1       bertrand  398: *
                    399:                CALL DPOTRS( UPLO, N, 1, AF, LDAF, WORK( N+1 ), N, INFO )
                    400:                DO 110 I = 1, N
                    401:                   WORK( N+I ) = WORK( I )*WORK( N+I )
                    402:   110          CONTINUE
                    403:             ELSE IF( KASE.EQ.2 ) THEN
                    404: *
                    405: *              Multiply by inv(A)*diag(W).
                    406: *
                    407:                DO 120 I = 1, N
                    408:                   WORK( N+I ) = WORK( I )*WORK( N+I )
                    409:   120          CONTINUE
                    410:                CALL DPOTRS( UPLO, N, 1, AF, LDAF, WORK( N+1 ), N, INFO )
                    411:             END IF
                    412:             GO TO 100
                    413:          END IF
                    414: *
                    415: *        Normalize error.
                    416: *
                    417:          LSTRES = ZERO
                    418:          DO 130 I = 1, N
                    419:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
                    420:   130    CONTINUE
                    421:          IF( LSTRES.NE.ZERO )
                    422:      $      FERR( J ) = FERR( J ) / LSTRES
                    423: *
                    424:   140 CONTINUE
                    425: *
                    426:       RETURN
                    427: *
                    428: *     End of DPORFS
                    429: *
                    430:       END

CVSweb interface <joel.bertrand@systella.fr>