Annotation of rpl/lapack/lapack/dpftrs.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE DPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
                      2: *
1.4     ! bertrand    3: *  -- LAPACK routine (version 3.3.0)                                    --
1.1       bertrand    4: *
                      5: *  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
1.4     ! bertrand    6: *     November 2010
1.1       bertrand    7: *
                      8: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      9: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          TRANSR, UPLO
                     13:       INTEGER            INFO, LDB, N, NRHS
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       DOUBLE PRECISION   A( 0: * ), B( LDB, * )
                     17: *     ..
                     18: *
                     19: *  Purpose
                     20: *  =======
                     21: *
                     22: *  DPFTRS solves a system of linear equations A*X = B with a symmetric
                     23: *  positive definite matrix A using the Cholesky factorization
                     24: *  A = U**T*U or A = L*L**T computed by DPFTRF.
                     25: *
                     26: *  Arguments
                     27: *  =========
                     28: *
1.4     ! bertrand   29: *  TRANSR  (input) CHARACTER*1
1.1       bertrand   30: *          = 'N':  The Normal TRANSR of RFP A is stored;
                     31: *          = 'T':  The Transpose TRANSR of RFP A is stored.
                     32: *
1.4     ! bertrand   33: *  UPLO    (input) CHARACTER*1
1.1       bertrand   34: *          = 'U':  Upper triangle of RFP A is stored;
                     35: *          = 'L':  Lower triangle of RFP A is stored.
                     36: *
                     37: *  N       (input) INTEGER
                     38: *          The order of the matrix A.  N >= 0.
                     39: *
                     40: *  NRHS    (input) INTEGER
                     41: *          The number of right hand sides, i.e., the number of columns
                     42: *          of the matrix B.  NRHS >= 0.
                     43: *
                     44: *  A       (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ).
                     45: *          The triangular factor U or L from the Cholesky factorization
                     46: *          of RFP A = U**T*U or RFP A = L*L**T, as computed by DPFTRF.
                     47: *          See note below for more details about RFP A.
                     48: *
                     49: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
                     50: *          On entry, the right hand side matrix B.
                     51: *          On exit, the solution matrix X.
                     52: *
                     53: *  LDB     (input) INTEGER
                     54: *          The leading dimension of the array B.  LDB >= max(1,N).
                     55: *
                     56: *  INFO    (output) INTEGER
                     57: *          = 0:  successful exit
                     58: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     59: *
                     60: *  Further Details
                     61: *  ===============
                     62: *
                     63: *  We first consider Rectangular Full Packed (RFP) Format when N is
                     64: *  even. We give an example where N = 6.
                     65: *
                     66: *      AP is Upper             AP is Lower
                     67: *
                     68: *   00 01 02 03 04 05       00
                     69: *      11 12 13 14 15       10 11
                     70: *         22 23 24 25       20 21 22
                     71: *            33 34 35       30 31 32 33
                     72: *               44 45       40 41 42 43 44
                     73: *                  55       50 51 52 53 54 55
                     74: *
                     75: *
                     76: *  Let TRANSR = 'N'. RFP holds AP as follows:
                     77: *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
                     78: *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
                     79: *  the transpose of the first three columns of AP upper.
                     80: *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
                     81: *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
                     82: *  the transpose of the last three columns of AP lower.
                     83: *  This covers the case N even and TRANSR = 'N'.
                     84: *
                     85: *         RFP A                   RFP A
                     86: *
                     87: *        03 04 05                33 43 53
                     88: *        13 14 15                00 44 54
                     89: *        23 24 25                10 11 55
                     90: *        33 34 35                20 21 22
                     91: *        00 44 45                30 31 32
                     92: *        01 11 55                40 41 42
                     93: *        02 12 22                50 51 52
                     94: *
                     95: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
                     96: *  transpose of RFP A above. One therefore gets:
                     97: *
                     98: *
                     99: *           RFP A                   RFP A
                    100: *
                    101: *     03 13 23 33 00 01 02    33 00 10 20 30 40 50
                    102: *     04 14 24 34 44 11 12    43 44 11 21 31 41 51
                    103: *     05 15 25 35 45 55 22    53 54 55 22 32 42 52
                    104: *
                    105: *
                    106: *  We then consider Rectangular Full Packed (RFP) Format when N is
                    107: *  odd. We give an example where N = 5.
                    108: *
                    109: *     AP is Upper                 AP is Lower
                    110: *
                    111: *   00 01 02 03 04              00
                    112: *      11 12 13 14              10 11
                    113: *         22 23 24              20 21 22
                    114: *            33 34              30 31 32 33
                    115: *               44              40 41 42 43 44
                    116: *
                    117: *
                    118: *  Let TRANSR = 'N'. RFP holds AP as follows:
                    119: *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
                    120: *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
                    121: *  the transpose of the first two columns of AP upper.
                    122: *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
                    123: *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
                    124: *  the transpose of the last two columns of AP lower.
                    125: *  This covers the case N odd and TRANSR = 'N'.
                    126: *
                    127: *         RFP A                   RFP A
                    128: *
                    129: *        02 03 04                00 33 43
                    130: *        12 13 14                10 11 44
                    131: *        22 23 24                20 21 22
                    132: *        00 33 34                30 31 32
                    133: *        01 11 44                40 41 42
                    134: *
                    135: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
                    136: *  transpose of RFP A above. One therefore gets:
                    137: *
                    138: *           RFP A                   RFP A
                    139: *
                    140: *     02 12 22 00 01             00 10 20 30 40 50
                    141: *     03 13 23 33 11             33 11 21 31 41 51
                    142: *     04 14 24 34 44             43 44 22 32 42 52
                    143: *
                    144: *  =====================================================================
                    145: *
                    146: *     .. Parameters ..
                    147:       DOUBLE PRECISION   ONE
                    148:       PARAMETER          ( ONE = 1.0D+0 )
                    149: *     ..
                    150: *     .. Local Scalars ..
                    151:       LOGICAL            LOWER, NORMALTRANSR
                    152: *     ..
                    153: *     .. External Functions ..
                    154:       LOGICAL            LSAME
                    155:       EXTERNAL           LSAME
                    156: *     ..
                    157: *     .. External Subroutines ..
                    158:       EXTERNAL           XERBLA, DTFSM
                    159: *     ..
                    160: *     .. Intrinsic Functions ..
                    161:       INTRINSIC          MAX
                    162: *     ..
                    163: *     .. Executable Statements ..
                    164: *
                    165: *     Test the input parameters.
                    166: *
                    167:       INFO = 0
                    168:       NORMALTRANSR = LSAME( TRANSR, 'N' )
                    169:       LOWER = LSAME( UPLO, 'L' )
                    170:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
                    171:          INFO = -1
                    172:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
                    173:          INFO = -2
                    174:       ELSE IF( N.LT.0 ) THEN
                    175:          INFO = -3
                    176:       ELSE IF( NRHS.LT.0 ) THEN
                    177:          INFO = -4
                    178:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    179:          INFO = -7
                    180:       END IF
                    181:       IF( INFO.NE.0 ) THEN
                    182:          CALL XERBLA( 'DPFTRS', -INFO )
                    183:          RETURN
                    184:       END IF
                    185: *
                    186: *     Quick return if possible
                    187: *
                    188:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
                    189:      +   RETURN
                    190: *
                    191: *     start execution: there are two triangular solves
                    192: *
                    193:       IF( LOWER ) THEN
                    194:          CALL DTFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B,
                    195:      +               LDB )
                    196:          CALL DTFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B,
                    197:      +               LDB )
                    198:       ELSE
                    199:          CALL DTFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B,
                    200:      +               LDB )
                    201:          CALL DTFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B,
                    202:      +               LDB )
                    203:       END IF
                    204: *
                    205:       RETURN
                    206: *
                    207: *     End of DPFTRS
                    208: *
                    209:       END

CVSweb interface <joel.bertrand@systella.fr>