File:  [local] / rpl / lapack / lapack / dpftri.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:21:05 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Ajout des nouveaux fichiers pour Lapack 3.2.2.

    1:       SUBROUTINE DPFTRI( TRANSR, UPLO, N, A, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2.2)                                    --
    4: *
    5: *  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
    6: *  -- June 2010                                                       --
    7: *
    8: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    9: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          TRANSR, UPLO
   13:       INTEGER            INFO, N
   14: *     .. Array Arguments ..
   15:       DOUBLE PRECISION         A( 0: * )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  DPFTRI computes the inverse of a (real) symmetric positive definite
   22: *  matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
   23: *  computed by DPFTRF.
   24: *
   25: *  Arguments
   26: *  =========
   27: *
   28: *  TRANSR  (input) CHARACTER
   29: *          = 'N':  The Normal TRANSR of RFP A is stored;
   30: *          = 'T':  The Transpose TRANSR of RFP A is stored.
   31: *
   32: *  UPLO    (input) CHARACTER
   33: *          = 'U':  Upper triangle of A is stored;
   34: *          = 'L':  Lower triangle of A is stored.
   35: *
   36: *  N       (input) INTEGER
   37: *          The order of the matrix A.  N >= 0.
   38: *
   39: *  A       (input/output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 )
   40: *          On entry, the symmetric matrix A in RFP format. RFP format is
   41: *          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
   42: *          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
   43: *          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
   44: *          the transpose of RFP A as defined when
   45: *          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
   46: *          follows: If UPLO = 'U' the RFP A contains the nt elements of
   47: *          upper packed A. If UPLO = 'L' the RFP A contains the elements
   48: *          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
   49: *          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
   50: *          is odd. See the Note below for more details.
   51: *
   52: *          On exit, the symmetric inverse of the original matrix, in the
   53: *          same storage format.
   54: *
   55: *  INFO    (output) INTEGER
   56: *          = 0:  successful exit
   57: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   58: *          > 0:  if INFO = i, the (i,i) element of the factor U or L is
   59: *                zero, and the inverse could not be computed.
   60: *
   61: *  Further Details
   62: *  ===============
   63: *
   64: *  We first consider Rectangular Full Packed (RFP) Format when N is
   65: *  even. We give an example where N = 6.
   66: *
   67: *      AP is Upper             AP is Lower
   68: *
   69: *   00 01 02 03 04 05       00
   70: *      11 12 13 14 15       10 11
   71: *         22 23 24 25       20 21 22
   72: *            33 34 35       30 31 32 33
   73: *               44 45       40 41 42 43 44
   74: *                  55       50 51 52 53 54 55
   75: *
   76: *
   77: *  Let TRANSR = 'N'. RFP holds AP as follows:
   78: *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
   79: *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
   80: *  the transpose of the first three columns of AP upper.
   81: *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
   82: *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
   83: *  the transpose of the last three columns of AP lower.
   84: *  This covers the case N even and TRANSR = 'N'.
   85: *
   86: *         RFP A                   RFP A
   87: *
   88: *        03 04 05                33 43 53
   89: *        13 14 15                00 44 54
   90: *        23 24 25                10 11 55
   91: *        33 34 35                20 21 22
   92: *        00 44 45                30 31 32
   93: *        01 11 55                40 41 42
   94: *        02 12 22                50 51 52
   95: *
   96: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
   97: *  transpose of RFP A above. One therefore gets:
   98: *
   99: *
  100: *           RFP A                   RFP A
  101: *
  102: *     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  103: *     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  104: *     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  105: *
  106: *
  107: *  We then consider Rectangular Full Packed (RFP) Format when N is
  108: *  odd. We give an example where N = 5.
  109: *
  110: *     AP is Upper                 AP is Lower
  111: *
  112: *   00 01 02 03 04              00
  113: *      11 12 13 14              10 11
  114: *         22 23 24              20 21 22
  115: *            33 34              30 31 32 33
  116: *               44              40 41 42 43 44
  117: *
  118: *
  119: *  Let TRANSR = 'N'. RFP holds AP as follows:
  120: *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  121: *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  122: *  the transpose of the first two columns of AP upper.
  123: *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  124: *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  125: *  the transpose of the last two columns of AP lower.
  126: *  This covers the case N odd and TRANSR = 'N'.
  127: *
  128: *         RFP A                   RFP A
  129: *
  130: *        02 03 04                00 33 43
  131: *        12 13 14                10 11 44
  132: *        22 23 24                20 21 22
  133: *        00 33 34                30 31 32
  134: *        01 11 44                40 41 42
  135: *
  136: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  137: *  transpose of RFP A above. One therefore gets:
  138: *
  139: *           RFP A                   RFP A
  140: *
  141: *     02 12 22 00 01             00 10 20 30 40 50
  142: *     03 13 23 33 11             33 11 21 31 41 51
  143: *     04 14 24 34 44             43 44 22 32 42 52
  144: *
  145: *  =====================================================================
  146: *
  147: *     .. Parameters ..
  148:       DOUBLE PRECISION   ONE
  149:       PARAMETER          ( ONE = 1.0D+0 )
  150: *     ..
  151: *     .. Local Scalars ..
  152:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  153:       INTEGER            N1, N2, K
  154: *     ..
  155: *     .. External Functions ..
  156:       LOGICAL            LSAME
  157:       EXTERNAL           LSAME
  158: *     ..
  159: *     .. External Subroutines ..
  160:       EXTERNAL           XERBLA, DTFTRI, DLAUUM, DTRMM, DSYRK
  161: *     ..
  162: *     .. Intrinsic Functions ..
  163:       INTRINSIC          MOD
  164: *     ..
  165: *     .. Executable Statements ..
  166: *
  167: *     Test the input parameters.
  168: *
  169:       INFO = 0
  170:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  171:       LOWER = LSAME( UPLO, 'L' )
  172:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  173:          INFO = -1
  174:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  175:          INFO = -2
  176:       ELSE IF( N.LT.0 ) THEN
  177:          INFO = -3
  178:       END IF
  179:       IF( INFO.NE.0 ) THEN
  180:          CALL XERBLA( 'DPFTRI', -INFO )
  181:          RETURN
  182:       END IF
  183: *
  184: *     Quick return if possible
  185: *
  186:       IF( N.EQ.0 )
  187:      +   RETURN
  188: *
  189: *     Invert the triangular Cholesky factor U or L.
  190: *
  191:       CALL DTFTRI( TRANSR, UPLO, 'N', N, A, INFO )
  192:       IF( INFO.GT.0 )
  193:      +   RETURN
  194: *
  195: *     If N is odd, set NISODD = .TRUE.
  196: *     If N is even, set K = N/2 and NISODD = .FALSE.
  197: *
  198:       IF( MOD( N, 2 ).EQ.0 ) THEN
  199:          K = N / 2
  200:          NISODD = .FALSE.
  201:       ELSE
  202:          NISODD = .TRUE.
  203:       END IF
  204: *
  205: *     Set N1 and N2 depending on LOWER
  206: *
  207:       IF( LOWER ) THEN
  208:          N2 = N / 2
  209:          N1 = N - N2
  210:       ELSE
  211:          N1 = N / 2
  212:          N2 = N - N1
  213:       END IF
  214: *
  215: *     Start execution of triangular matrix multiply: inv(U)*inv(U)^C or
  216: *     inv(L)^C*inv(L). There are eight cases.
  217: *
  218:       IF( NISODD ) THEN
  219: *
  220: *        N is odd
  221: *
  222:          IF( NORMALTRANSR ) THEN
  223: *
  224: *           N is odd and TRANSR = 'N'
  225: *
  226:             IF( LOWER ) THEN
  227: *
  228: *              SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:N1-1) )
  229: *              T1 -> a(0,0), T2 -> a(0,1), S -> a(N1,0)
  230: *              T1 -> a(0), T2 -> a(n), S -> a(N1)
  231: *
  232:                CALL DLAUUM( 'L', N1, A( 0 ), N, INFO )
  233:                CALL DSYRK( 'L', 'T', N1, N2, ONE, A( N1 ), N, ONE,
  234:      +                     A( 0 ), N )
  235:                CALL DTRMM( 'L', 'U', 'N', 'N', N2, N1, ONE, A( N ), N,
  236:      +                     A( N1 ), N )
  237:                CALL DLAUUM( 'U', N2, A( N ), N, INFO )
  238: *
  239:             ELSE
  240: *
  241: *              SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:N2-1)
  242: *              T1 -> a(N1+1,0), T2 -> a(N1,0), S -> a(0,0)
  243: *              T1 -> a(N2), T2 -> a(N1), S -> a(0)
  244: *
  245:                CALL DLAUUM( 'L', N1, A( N2 ), N, INFO )
  246:                CALL DSYRK( 'L', 'N', N1, N2, ONE, A( 0 ), N, ONE,
  247:      +                     A( N2 ), N )
  248:                CALL DTRMM( 'R', 'U', 'T', 'N', N1, N2, ONE, A( N1 ), N,
  249:      +                     A( 0 ), N )
  250:                CALL DLAUUM( 'U', N2, A( N1 ), N, INFO )
  251: *
  252:             END IF
  253: *
  254:          ELSE
  255: *
  256: *           N is odd and TRANSR = 'T'
  257: *
  258:             IF( LOWER ) THEN
  259: *
  260: *              SRPA for LOWER, TRANSPOSE, and N is odd
  261: *              T1 -> a(0), T2 -> a(1), S -> a(0+N1*N1)
  262: *
  263:                CALL DLAUUM( 'U', N1, A( 0 ), N1, INFO )
  264:                CALL DSYRK( 'U', 'N', N1, N2, ONE, A( N1*N1 ), N1, ONE,
  265:      +                     A( 0 ), N1 )
  266:                CALL DTRMM( 'R', 'L', 'N', 'N', N1, N2, ONE, A( 1 ), N1,
  267:      +                     A( N1*N1 ), N1 )
  268:                CALL DLAUUM( 'L', N2, A( 1 ), N1, INFO )
  269: *
  270:             ELSE
  271: *
  272: *              SRPA for UPPER, TRANSPOSE, and N is odd
  273: *              T1 -> a(0+N2*N2), T2 -> a(0+N1*N2), S -> a(0)
  274: *
  275:                CALL DLAUUM( 'U', N1, A( N2*N2 ), N2, INFO )
  276:                CALL DSYRK( 'U', 'T', N1, N2, ONE, A( 0 ), N2, ONE,
  277:      +                     A( N2*N2 ), N2 )
  278:                CALL DTRMM( 'L', 'L', 'T', 'N', N2, N1, ONE, A( N1*N2 ),
  279:      +                     N2, A( 0 ), N2 )
  280:                CALL DLAUUM( 'L', N2, A( N1*N2 ), N2, INFO )
  281: *
  282:             END IF
  283: *
  284:          END IF
  285: *
  286:       ELSE
  287: *
  288: *        N is even
  289: *
  290:          IF( NORMALTRANSR ) THEN
  291: *
  292: *           N is even and TRANSR = 'N'
  293: *
  294:             IF( LOWER ) THEN
  295: *
  296: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  297: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  298: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
  299: *
  300:                CALL DLAUUM( 'L', K, A( 1 ), N+1, INFO )
  301:                CALL DSYRK( 'L', 'T', K, K, ONE, A( K+1 ), N+1, ONE,
  302:      +                     A( 1 ), N+1 )
  303:                CALL DTRMM( 'L', 'U', 'N', 'N', K, K, ONE, A( 0 ), N+1,
  304:      +                     A( K+1 ), N+1 )
  305:                CALL DLAUUM( 'U', K, A( 0 ), N+1, INFO )
  306: *
  307:             ELSE
  308: *
  309: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  310: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  311: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
  312: *
  313:                CALL DLAUUM( 'L', K, A( K+1 ), N+1, INFO )
  314:                CALL DSYRK( 'L', 'N', K, K, ONE, A( 0 ), N+1, ONE,
  315:      +                     A( K+1 ), N+1 )
  316:                CALL DTRMM( 'R', 'U', 'T', 'N', K, K, ONE, A( K ), N+1,
  317:      +                     A( 0 ), N+1 )
  318:                CALL DLAUUM( 'U', K, A( K ), N+1, INFO )
  319: *
  320:             END IF
  321: *
  322:          ELSE
  323: *
  324: *           N is even and TRANSR = 'T'
  325: *
  326:             IF( LOWER ) THEN
  327: *
  328: *              SRPA for LOWER, TRANSPOSE, and N is even (see paper)
  329: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1),
  330: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  331: *
  332:                CALL DLAUUM( 'U', K, A( K ), K, INFO )
  333:                CALL DSYRK( 'U', 'N', K, K, ONE, A( K*( K+1 ) ), K, ONE,
  334:      +                     A( K ), K )
  335:                CALL DTRMM( 'R', 'L', 'N', 'N', K, K, ONE, A( 0 ), K,
  336:      +                     A( K*( K+1 ) ), K )
  337:                CALL DLAUUM( 'L', K, A( 0 ), K, INFO )
  338: *
  339:             ELSE
  340: *
  341: *              SRPA for UPPER, TRANSPOSE, and N is even (see paper)
  342: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0),
  343: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  344: *
  345:                CALL DLAUUM( 'U', K, A( K*( K+1 ) ), K, INFO )
  346:                CALL DSYRK( 'U', 'T', K, K, ONE, A( 0 ), K, ONE,
  347:      +                     A( K*( K+1 ) ), K )
  348:                CALL DTRMM( 'L', 'L', 'T', 'N', K, K, ONE, A( K*K ), K,
  349:      +                     A( 0 ), K )
  350:                CALL DLAUUM( 'L', K, A( K*K ), K, INFO )
  351: *
  352:             END IF
  353: *
  354:          END IF
  355: *
  356:       END IF
  357: *
  358:       RETURN
  359: *
  360: *     End of DPFTRI
  361: *
  362:       END

CVSweb interface <joel.bertrand@systella.fr>