Annotation of rpl/lapack/lapack/dpftri.f, revision 1.5

1.1       bertrand    1:       SUBROUTINE DPFTRI( TRANSR, UPLO, N, A, INFO )
                      2: *
1.4       bertrand    3: *  -- LAPACK routine (version 3.3.0)                                    --
1.1       bertrand    4: *
                      5: *  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
1.4       bertrand    6: *     November 2010
1.1       bertrand    7: *
                      8: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      9: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          TRANSR, UPLO
                     13:       INTEGER            INFO, N
                     14: *     .. Array Arguments ..
                     15:       DOUBLE PRECISION         A( 0: * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  DPFTRI computes the inverse of a (real) symmetric positive definite
                     22: *  matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
                     23: *  computed by DPFTRF.
                     24: *
                     25: *  Arguments
                     26: *  =========
                     27: *
1.4       bertrand   28: *  TRANSR  (input) CHARACTER*1
1.1       bertrand   29: *          = 'N':  The Normal TRANSR of RFP A is stored;
                     30: *          = 'T':  The Transpose TRANSR of RFP A is stored.
                     31: *
1.4       bertrand   32: *  UPLO    (input) CHARACTER*1
1.1       bertrand   33: *          = 'U':  Upper triangle of A is stored;
                     34: *          = 'L':  Lower triangle of A is stored.
                     35: *
                     36: *  N       (input) INTEGER
                     37: *          The order of the matrix A.  N >= 0.
                     38: *
                     39: *  A       (input/output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 )
                     40: *          On entry, the symmetric matrix A in RFP format. RFP format is
                     41: *          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
                     42: *          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
                     43: *          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
                     44: *          the transpose of RFP A as defined when
                     45: *          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
                     46: *          follows: If UPLO = 'U' the RFP A contains the nt elements of
                     47: *          upper packed A. If UPLO = 'L' the RFP A contains the elements
                     48: *          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
                     49: *          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
                     50: *          is odd. See the Note below for more details.
                     51: *
                     52: *          On exit, the symmetric inverse of the original matrix, in the
                     53: *          same storage format.
                     54: *
                     55: *  INFO    (output) INTEGER
                     56: *          = 0:  successful exit
                     57: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     58: *          > 0:  if INFO = i, the (i,i) element of the factor U or L is
                     59: *                zero, and the inverse could not be computed.
                     60: *
                     61: *  Further Details
                     62: *  ===============
                     63: *
                     64: *  We first consider Rectangular Full Packed (RFP) Format when N is
                     65: *  even. We give an example where N = 6.
                     66: *
                     67: *      AP is Upper             AP is Lower
                     68: *
                     69: *   00 01 02 03 04 05       00
                     70: *      11 12 13 14 15       10 11
                     71: *         22 23 24 25       20 21 22
                     72: *            33 34 35       30 31 32 33
                     73: *               44 45       40 41 42 43 44
                     74: *                  55       50 51 52 53 54 55
                     75: *
                     76: *
                     77: *  Let TRANSR = 'N'. RFP holds AP as follows:
                     78: *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
                     79: *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
                     80: *  the transpose of the first three columns of AP upper.
                     81: *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
                     82: *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
                     83: *  the transpose of the last three columns of AP lower.
                     84: *  This covers the case N even and TRANSR = 'N'.
                     85: *
                     86: *         RFP A                   RFP A
                     87: *
                     88: *        03 04 05                33 43 53
                     89: *        13 14 15                00 44 54
                     90: *        23 24 25                10 11 55
                     91: *        33 34 35                20 21 22
                     92: *        00 44 45                30 31 32
                     93: *        01 11 55                40 41 42
                     94: *        02 12 22                50 51 52
                     95: *
                     96: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
                     97: *  transpose of RFP A above. One therefore gets:
                     98: *
                     99: *
                    100: *           RFP A                   RFP A
                    101: *
                    102: *     03 13 23 33 00 01 02    33 00 10 20 30 40 50
                    103: *     04 14 24 34 44 11 12    43 44 11 21 31 41 51
                    104: *     05 15 25 35 45 55 22    53 54 55 22 32 42 52
                    105: *
                    106: *
                    107: *  We then consider Rectangular Full Packed (RFP) Format when N is
                    108: *  odd. We give an example where N = 5.
                    109: *
                    110: *     AP is Upper                 AP is Lower
                    111: *
                    112: *   00 01 02 03 04              00
                    113: *      11 12 13 14              10 11
                    114: *         22 23 24              20 21 22
                    115: *            33 34              30 31 32 33
                    116: *               44              40 41 42 43 44
                    117: *
                    118: *
                    119: *  Let TRANSR = 'N'. RFP holds AP as follows:
                    120: *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
                    121: *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
                    122: *  the transpose of the first two columns of AP upper.
                    123: *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
                    124: *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
                    125: *  the transpose of the last two columns of AP lower.
                    126: *  This covers the case N odd and TRANSR = 'N'.
                    127: *
                    128: *         RFP A                   RFP A
                    129: *
                    130: *        02 03 04                00 33 43
                    131: *        12 13 14                10 11 44
                    132: *        22 23 24                20 21 22
                    133: *        00 33 34                30 31 32
                    134: *        01 11 44                40 41 42
                    135: *
                    136: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
                    137: *  transpose of RFP A above. One therefore gets:
                    138: *
                    139: *           RFP A                   RFP A
                    140: *
                    141: *     02 12 22 00 01             00 10 20 30 40 50
                    142: *     03 13 23 33 11             33 11 21 31 41 51
                    143: *     04 14 24 34 44             43 44 22 32 42 52
                    144: *
                    145: *  =====================================================================
                    146: *
                    147: *     .. Parameters ..
                    148:       DOUBLE PRECISION   ONE
                    149:       PARAMETER          ( ONE = 1.0D+0 )
                    150: *     ..
                    151: *     .. Local Scalars ..
                    152:       LOGICAL            LOWER, NISODD, NORMALTRANSR
                    153:       INTEGER            N1, N2, K
                    154: *     ..
                    155: *     .. External Functions ..
                    156:       LOGICAL            LSAME
                    157:       EXTERNAL           LSAME
                    158: *     ..
                    159: *     .. External Subroutines ..
                    160:       EXTERNAL           XERBLA, DTFTRI, DLAUUM, DTRMM, DSYRK
                    161: *     ..
                    162: *     .. Intrinsic Functions ..
                    163:       INTRINSIC          MOD
                    164: *     ..
                    165: *     .. Executable Statements ..
                    166: *
                    167: *     Test the input parameters.
                    168: *
                    169:       INFO = 0
                    170:       NORMALTRANSR = LSAME( TRANSR, 'N' )
                    171:       LOWER = LSAME( UPLO, 'L' )
                    172:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
                    173:          INFO = -1
                    174:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
                    175:          INFO = -2
                    176:       ELSE IF( N.LT.0 ) THEN
                    177:          INFO = -3
                    178:       END IF
                    179:       IF( INFO.NE.0 ) THEN
                    180:          CALL XERBLA( 'DPFTRI', -INFO )
                    181:          RETURN
                    182:       END IF
                    183: *
                    184: *     Quick return if possible
                    185: *
                    186:       IF( N.EQ.0 )
                    187:      +   RETURN
                    188: *
                    189: *     Invert the triangular Cholesky factor U or L.
                    190: *
                    191:       CALL DTFTRI( TRANSR, UPLO, 'N', N, A, INFO )
                    192:       IF( INFO.GT.0 )
                    193:      +   RETURN
                    194: *
                    195: *     If N is odd, set NISODD = .TRUE.
                    196: *     If N is even, set K = N/2 and NISODD = .FALSE.
                    197: *
                    198:       IF( MOD( N, 2 ).EQ.0 ) THEN
                    199:          K = N / 2
                    200:          NISODD = .FALSE.
                    201:       ELSE
                    202:          NISODD = .TRUE.
                    203:       END IF
                    204: *
                    205: *     Set N1 and N2 depending on LOWER
                    206: *
                    207:       IF( LOWER ) THEN
                    208:          N2 = N / 2
                    209:          N1 = N - N2
                    210:       ELSE
                    211:          N1 = N / 2
                    212:          N2 = N - N1
                    213:       END IF
                    214: *
                    215: *     Start execution of triangular matrix multiply: inv(U)*inv(U)^C or
                    216: *     inv(L)^C*inv(L). There are eight cases.
                    217: *
                    218:       IF( NISODD ) THEN
                    219: *
                    220: *        N is odd
                    221: *
                    222:          IF( NORMALTRANSR ) THEN
                    223: *
                    224: *           N is odd and TRANSR = 'N'
                    225: *
                    226:             IF( LOWER ) THEN
                    227: *
                    228: *              SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:N1-1) )
                    229: *              T1 -> a(0,0), T2 -> a(0,1), S -> a(N1,0)
                    230: *              T1 -> a(0), T2 -> a(n), S -> a(N1)
                    231: *
                    232:                CALL DLAUUM( 'L', N1, A( 0 ), N, INFO )
                    233:                CALL DSYRK( 'L', 'T', N1, N2, ONE, A( N1 ), N, ONE,
                    234:      +                     A( 0 ), N )
                    235:                CALL DTRMM( 'L', 'U', 'N', 'N', N2, N1, ONE, A( N ), N,
                    236:      +                     A( N1 ), N )
                    237:                CALL DLAUUM( 'U', N2, A( N ), N, INFO )
                    238: *
                    239:             ELSE
                    240: *
                    241: *              SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:N2-1)
                    242: *              T1 -> a(N1+1,0), T2 -> a(N1,0), S -> a(0,0)
                    243: *              T1 -> a(N2), T2 -> a(N1), S -> a(0)
                    244: *
                    245:                CALL DLAUUM( 'L', N1, A( N2 ), N, INFO )
                    246:                CALL DSYRK( 'L', 'N', N1, N2, ONE, A( 0 ), N, ONE,
                    247:      +                     A( N2 ), N )
                    248:                CALL DTRMM( 'R', 'U', 'T', 'N', N1, N2, ONE, A( N1 ), N,
                    249:      +                     A( 0 ), N )
                    250:                CALL DLAUUM( 'U', N2, A( N1 ), N, INFO )
                    251: *
                    252:             END IF
                    253: *
                    254:          ELSE
                    255: *
                    256: *           N is odd and TRANSR = 'T'
                    257: *
                    258:             IF( LOWER ) THEN
                    259: *
                    260: *              SRPA for LOWER, TRANSPOSE, and N is odd
                    261: *              T1 -> a(0), T2 -> a(1), S -> a(0+N1*N1)
                    262: *
                    263:                CALL DLAUUM( 'U', N1, A( 0 ), N1, INFO )
                    264:                CALL DSYRK( 'U', 'N', N1, N2, ONE, A( N1*N1 ), N1, ONE,
                    265:      +                     A( 0 ), N1 )
                    266:                CALL DTRMM( 'R', 'L', 'N', 'N', N1, N2, ONE, A( 1 ), N1,
                    267:      +                     A( N1*N1 ), N1 )
                    268:                CALL DLAUUM( 'L', N2, A( 1 ), N1, INFO )
                    269: *
                    270:             ELSE
                    271: *
                    272: *              SRPA for UPPER, TRANSPOSE, and N is odd
                    273: *              T1 -> a(0+N2*N2), T2 -> a(0+N1*N2), S -> a(0)
                    274: *
                    275:                CALL DLAUUM( 'U', N1, A( N2*N2 ), N2, INFO )
                    276:                CALL DSYRK( 'U', 'T', N1, N2, ONE, A( 0 ), N2, ONE,
                    277:      +                     A( N2*N2 ), N2 )
                    278:                CALL DTRMM( 'L', 'L', 'T', 'N', N2, N1, ONE, A( N1*N2 ),
                    279:      +                     N2, A( 0 ), N2 )
                    280:                CALL DLAUUM( 'L', N2, A( N1*N2 ), N2, INFO )
                    281: *
                    282:             END IF
                    283: *
                    284:          END IF
                    285: *
                    286:       ELSE
                    287: *
                    288: *        N is even
                    289: *
                    290:          IF( NORMALTRANSR ) THEN
                    291: *
                    292: *           N is even and TRANSR = 'N'
                    293: *
                    294:             IF( LOWER ) THEN
                    295: *
                    296: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
                    297: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
                    298: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
                    299: *
                    300:                CALL DLAUUM( 'L', K, A( 1 ), N+1, INFO )
                    301:                CALL DSYRK( 'L', 'T', K, K, ONE, A( K+1 ), N+1, ONE,
                    302:      +                     A( 1 ), N+1 )
                    303:                CALL DTRMM( 'L', 'U', 'N', 'N', K, K, ONE, A( 0 ), N+1,
                    304:      +                     A( K+1 ), N+1 )
                    305:                CALL DLAUUM( 'U', K, A( 0 ), N+1, INFO )
                    306: *
                    307:             ELSE
                    308: *
                    309: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
                    310: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
                    311: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
                    312: *
                    313:                CALL DLAUUM( 'L', K, A( K+1 ), N+1, INFO )
                    314:                CALL DSYRK( 'L', 'N', K, K, ONE, A( 0 ), N+1, ONE,
                    315:      +                     A( K+1 ), N+1 )
                    316:                CALL DTRMM( 'R', 'U', 'T', 'N', K, K, ONE, A( K ), N+1,
                    317:      +                     A( 0 ), N+1 )
                    318:                CALL DLAUUM( 'U', K, A( K ), N+1, INFO )
                    319: *
                    320:             END IF
                    321: *
                    322:          ELSE
                    323: *
                    324: *           N is even and TRANSR = 'T'
                    325: *
                    326:             IF( LOWER ) THEN
                    327: *
                    328: *              SRPA for LOWER, TRANSPOSE, and N is even (see paper)
                    329: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1),
                    330: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
                    331: *
                    332:                CALL DLAUUM( 'U', K, A( K ), K, INFO )
                    333:                CALL DSYRK( 'U', 'N', K, K, ONE, A( K*( K+1 ) ), K, ONE,
                    334:      +                     A( K ), K )
                    335:                CALL DTRMM( 'R', 'L', 'N', 'N', K, K, ONE, A( 0 ), K,
                    336:      +                     A( K*( K+1 ) ), K )
                    337:                CALL DLAUUM( 'L', K, A( 0 ), K, INFO )
                    338: *
                    339:             ELSE
                    340: *
                    341: *              SRPA for UPPER, TRANSPOSE, and N is even (see paper)
                    342: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0),
                    343: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
                    344: *
                    345:                CALL DLAUUM( 'U', K, A( K*( K+1 ) ), K, INFO )
                    346:                CALL DSYRK( 'U', 'T', K, K, ONE, A( 0 ), K, ONE,
                    347:      +                     A( K*( K+1 ) ), K )
                    348:                CALL DTRMM( 'L', 'L', 'T', 'N', K, K, ONE, A( K*K ), K,
                    349:      +                     A( 0 ), K )
                    350:                CALL DLAUUM( 'L', K, A( K*K ), K, INFO )
                    351: *
                    352:             END IF
                    353: *
                    354:          END IF
                    355: *
                    356:       END IF
                    357: *
                    358:       RETURN
                    359: *
                    360: *     End of DPFTRI
                    361: *
                    362:       END

CVSweb interface <joel.bertrand@systella.fr>