File:  [local] / rpl / lapack / lapack / dpftrf.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:09 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE DPFTRF( TRANSR, UPLO, N, A, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.3.1)                                    --
    4: *
    5: *  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
    6: *  -- April 2011                                                      --
    7: *
    8: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    9: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   10: *
   11: *     ..
   12: *     .. Scalar Arguments ..
   13:       CHARACTER          TRANSR, UPLO
   14:       INTEGER            N, INFO
   15: *     ..
   16: *     .. Array Arguments ..
   17:       DOUBLE PRECISION   A( 0: * )
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  DPFTRF computes the Cholesky factorization of a real symmetric
   23: *  positive definite matrix A.
   24: *
   25: *  The factorization has the form
   26: *     A = U**T * U,  if UPLO = 'U', or
   27: *     A = L  * L**T,  if UPLO = 'L',
   28: *  where U is an upper triangular matrix and L is lower triangular.
   29: *
   30: *  This is the block version of the algorithm, calling Level 3 BLAS.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  TRANSR    (input) CHARACTER*1
   36: *          = 'N':  The Normal TRANSR of RFP A is stored;
   37: *          = 'T':  The Transpose TRANSR of RFP A is stored.
   38: *
   39: *  UPLO    (input) CHARACTER*1
   40: *          = 'U':  Upper triangle of RFP A is stored;
   41: *          = 'L':  Lower triangle of RFP A is stored.
   42: *
   43: *  N       (input) INTEGER
   44: *          The order of the matrix A.  N >= 0.
   45: *
   46: *  A       (input/output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 );
   47: *          On entry, the symmetric matrix A in RFP format. RFP format is
   48: *          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
   49: *          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
   50: *          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
   51: *          the transpose of RFP A as defined when
   52: *          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
   53: *          follows: If UPLO = 'U' the RFP A contains the NT elements of
   54: *          upper packed A. If UPLO = 'L' the RFP A contains the elements
   55: *          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
   56: *          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
   57: *          is odd. See the Note below for more details.
   58: *
   59: *          On exit, if INFO = 0, the factor U or L from the Cholesky
   60: *          factorization RFP A = U**T*U or RFP A = L*L**T.
   61: *
   62: *  INFO    (output) INTEGER
   63: *          = 0:  successful exit
   64: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   65: *          > 0:  if INFO = i, the leading minor of order i is not
   66: *                positive definite, and the factorization could not be
   67: *                completed.
   68: *
   69: *  Further Details
   70: *  ===============
   71: *
   72: *  We first consider Rectangular Full Packed (RFP) Format when N is
   73: *  even. We give an example where N = 6.
   74: *
   75: *      AP is Upper             AP is Lower
   76: *
   77: *   00 01 02 03 04 05       00
   78: *      11 12 13 14 15       10 11
   79: *         22 23 24 25       20 21 22
   80: *            33 34 35       30 31 32 33
   81: *               44 45       40 41 42 43 44
   82: *                  55       50 51 52 53 54 55
   83: *
   84: *
   85: *  Let TRANSR = 'N'. RFP holds AP as follows:
   86: *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
   87: *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
   88: *  the transpose of the first three columns of AP upper.
   89: *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
   90: *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
   91: *  the transpose of the last three columns of AP lower.
   92: *  This covers the case N even and TRANSR = 'N'.
   93: *
   94: *         RFP A                   RFP A
   95: *
   96: *        03 04 05                33 43 53
   97: *        13 14 15                00 44 54
   98: *        23 24 25                10 11 55
   99: *        33 34 35                20 21 22
  100: *        00 44 45                30 31 32
  101: *        01 11 55                40 41 42
  102: *        02 12 22                50 51 52
  103: *
  104: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  105: *  transpose of RFP A above. One therefore gets:
  106: *
  107: *
  108: *           RFP A                   RFP A
  109: *
  110: *     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  111: *     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  112: *     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  113: *
  114: *
  115: *  We then consider Rectangular Full Packed (RFP) Format when N is
  116: *  odd. We give an example where N = 5.
  117: *
  118: *     AP is Upper                 AP is Lower
  119: *
  120: *   00 01 02 03 04              00
  121: *      11 12 13 14              10 11
  122: *         22 23 24              20 21 22
  123: *            33 34              30 31 32 33
  124: *               44              40 41 42 43 44
  125: *
  126: *
  127: *  Let TRANSR = 'N'. RFP holds AP as follows:
  128: *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  129: *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  130: *  the transpose of the first two columns of AP upper.
  131: *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  132: *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  133: *  the transpose of the last two columns of AP lower.
  134: *  This covers the case N odd and TRANSR = 'N'.
  135: *
  136: *         RFP A                   RFP A
  137: *
  138: *        02 03 04                00 33 43
  139: *        12 13 14                10 11 44
  140: *        22 23 24                20 21 22
  141: *        00 33 34                30 31 32
  142: *        01 11 44                40 41 42
  143: *
  144: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  145: *  transpose of RFP A above. One therefore gets:
  146: *
  147: *           RFP A                   RFP A
  148: *
  149: *     02 12 22 00 01             00 10 20 30 40 50
  150: *     03 13 23 33 11             33 11 21 31 41 51
  151: *     04 14 24 34 44             43 44 22 32 42 52
  152: *
  153: *  =====================================================================
  154: *
  155: *     .. Parameters ..
  156:       DOUBLE PRECISION   ONE
  157:       PARAMETER          ( ONE = 1.0D+0 )
  158: *     ..
  159: *     .. Local Scalars ..
  160:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  161:       INTEGER            N1, N2, K
  162: *     ..
  163: *     .. External Functions ..
  164:       LOGICAL            LSAME
  165:       EXTERNAL           LSAME
  166: *     ..
  167: *     .. External Subroutines ..
  168:       EXTERNAL           XERBLA, DSYRK, DPOTRF, DTRSM
  169: *     ..
  170: *     .. Intrinsic Functions ..
  171:       INTRINSIC          MOD
  172: *     ..
  173: *     .. Executable Statements ..
  174: *
  175: *     Test the input parameters.
  176: *
  177:       INFO = 0
  178:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  179:       LOWER = LSAME( UPLO, 'L' )
  180:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  181:          INFO = -1
  182:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  183:          INFO = -2
  184:       ELSE IF( N.LT.0 ) THEN
  185:          INFO = -3
  186:       END IF
  187:       IF( INFO.NE.0 ) THEN
  188:          CALL XERBLA( 'DPFTRF', -INFO )
  189:          RETURN
  190:       END IF
  191: *
  192: *     Quick return if possible
  193: *
  194:       IF( N.EQ.0 )
  195:      $   RETURN
  196: *
  197: *     If N is odd, set NISODD = .TRUE.
  198: *     If N is even, set K = N/2 and NISODD = .FALSE.
  199: *
  200:       IF( MOD( N, 2 ).EQ.0 ) THEN
  201:          K = N / 2
  202:          NISODD = .FALSE.
  203:       ELSE
  204:          NISODD = .TRUE.
  205:       END IF
  206: *
  207: *     Set N1 and N2 depending on LOWER
  208: *
  209:       IF( LOWER ) THEN
  210:          N2 = N / 2
  211:          N1 = N - N2
  212:       ELSE
  213:          N1 = N / 2
  214:          N2 = N - N1
  215:       END IF
  216: *
  217: *     start execution: there are eight cases
  218: *
  219:       IF( NISODD ) THEN
  220: *
  221: *        N is odd
  222: *
  223:          IF( NORMALTRANSR ) THEN
  224: *
  225: *           N is odd and TRANSR = 'N'
  226: *
  227:             IF( LOWER ) THEN
  228: *
  229: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  230: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  231: *             T1 -> a(0), T2 -> a(n), S -> a(n1)
  232: *
  233:                CALL DPOTRF( 'L', N1, A( 0 ), N, INFO )
  234:                IF( INFO.GT.0 )
  235:      $            RETURN
  236:                CALL DTRSM( 'R', 'L', 'T', 'N', N2, N1, ONE, A( 0 ), N,
  237:      $                     A( N1 ), N )
  238:                CALL DSYRK( 'U', 'N', N2, N1, -ONE, A( N1 ), N, ONE,
  239:      $                     A( N ), N )
  240:                CALL DPOTRF( 'U', N2, A( N ), N, INFO )
  241:                IF( INFO.GT.0 )
  242:      $            INFO = INFO + N1
  243: *
  244:             ELSE
  245: *
  246: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  247: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  248: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
  249: *
  250:                CALL DPOTRF( 'L', N1, A( N2 ), N, INFO )
  251:                IF( INFO.GT.0 )
  252:      $            RETURN
  253:                CALL DTRSM( 'L', 'L', 'N', 'N', N1, N2, ONE, A( N2 ), N,
  254:      $                     A( 0 ), N )
  255:                CALL DSYRK( 'U', 'T', N2, N1, -ONE, A( 0 ), N, ONE,
  256:      $                     A( N1 ), N )
  257:                CALL DPOTRF( 'U', N2, A( N1 ), N, INFO )
  258:                IF( INFO.GT.0 )
  259:      $            INFO = INFO + N1
  260: *
  261:             END IF
  262: *
  263:          ELSE
  264: *
  265: *           N is odd and TRANSR = 'T'
  266: *
  267:             IF( LOWER ) THEN
  268: *
  269: *              SRPA for LOWER, TRANSPOSE and N is odd
  270: *              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
  271: *              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
  272: *
  273:                CALL DPOTRF( 'U', N1, A( 0 ), N1, INFO )
  274:                IF( INFO.GT.0 )
  275:      $            RETURN
  276:                CALL DTRSM( 'L', 'U', 'T', 'N', N1, N2, ONE, A( 0 ), N1,
  277:      $                     A( N1*N1 ), N1 )
  278:                CALL DSYRK( 'L', 'T', N2, N1, -ONE, A( N1*N1 ), N1, ONE,
  279:      $                     A( 1 ), N1 )
  280:                CALL DPOTRF( 'L', N2, A( 1 ), N1, INFO )
  281:                IF( INFO.GT.0 )
  282:      $            INFO = INFO + N1
  283: *
  284:             ELSE
  285: *
  286: *              SRPA for UPPER, TRANSPOSE and N is odd
  287: *              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
  288: *              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
  289: *
  290:                CALL DPOTRF( 'U', N1, A( N2*N2 ), N2, INFO )
  291:                IF( INFO.GT.0 )
  292:      $            RETURN
  293:                CALL DTRSM( 'R', 'U', 'N', 'N', N2, N1, ONE, A( N2*N2 ),
  294:      $                     N2, A( 0 ), N2 )
  295:                CALL DSYRK( 'L', 'N', N2, N1, -ONE, A( 0 ), N2, ONE,
  296:      $                     A( N1*N2 ), N2 )
  297:                CALL DPOTRF( 'L', N2, A( N1*N2 ), N2, INFO )
  298:                IF( INFO.GT.0 )
  299:      $            INFO = INFO + N1
  300: *
  301:             END IF
  302: *
  303:          END IF
  304: *
  305:       ELSE
  306: *
  307: *        N is even
  308: *
  309:          IF( NORMALTRANSR ) THEN
  310: *
  311: *           N is even and TRANSR = 'N'
  312: *
  313:             IF( LOWER ) THEN
  314: *
  315: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  316: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  317: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
  318: *
  319:                CALL DPOTRF( 'L', K, A( 1 ), N+1, INFO )
  320:                IF( INFO.GT.0 )
  321:      $            RETURN
  322:                CALL DTRSM( 'R', 'L', 'T', 'N', K, K, ONE, A( 1 ), N+1,
  323:      $                     A( K+1 ), N+1 )
  324:                CALL DSYRK( 'U', 'N', K, K, -ONE, A( K+1 ), N+1, ONE,
  325:      $                     A( 0 ), N+1 )
  326:                CALL DPOTRF( 'U', K, A( 0 ), N+1, INFO )
  327:                IF( INFO.GT.0 )
  328:      $            INFO = INFO + K
  329: *
  330:             ELSE
  331: *
  332: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  333: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  334: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
  335: *
  336:                CALL DPOTRF( 'L', K, A( K+1 ), N+1, INFO )
  337:                IF( INFO.GT.0 )
  338:      $            RETURN
  339:                CALL DTRSM( 'L', 'L', 'N', 'N', K, K, ONE, A( K+1 ),
  340:      $                     N+1, A( 0 ), N+1 )
  341:                CALL DSYRK( 'U', 'T', K, K, -ONE, A( 0 ), N+1, ONE,
  342:      $                     A( K ), N+1 )
  343:                CALL DPOTRF( 'U', K, A( K ), N+1, INFO )
  344:                IF( INFO.GT.0 )
  345:      $            INFO = INFO + K
  346: *
  347:             END IF
  348: *
  349:          ELSE
  350: *
  351: *           N is even and TRANSR = 'T'
  352: *
  353:             IF( LOWER ) THEN
  354: *
  355: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
  356: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  357: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  358: *
  359:                CALL DPOTRF( 'U', K, A( 0+K ), K, INFO )
  360:                IF( INFO.GT.0 )
  361:      $            RETURN
  362:                CALL DTRSM( 'L', 'U', 'T', 'N', K, K, ONE, A( K ), N1,
  363:      $                     A( K*( K+1 ) ), K )
  364:                CALL DSYRK( 'L', 'T', K, K, -ONE, A( K*( K+1 ) ), K, ONE,
  365:      $                     A( 0 ), K )
  366:                CALL DPOTRF( 'L', K, A( 0 ), K, INFO )
  367:                IF( INFO.GT.0 )
  368:      $            INFO = INFO + K
  369: *
  370:             ELSE
  371: *
  372: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
  373: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
  374: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  375: *
  376:                CALL DPOTRF( 'U', K, A( K*( K+1 ) ), K, INFO )
  377:                IF( INFO.GT.0 )
  378:      $            RETURN
  379:                CALL DTRSM( 'R', 'U', 'N', 'N', K, K, ONE,
  380:      $                     A( K*( K+1 ) ), K, A( 0 ), K )
  381:                CALL DSYRK( 'L', 'N', K, K, -ONE, A( 0 ), K, ONE,
  382:      $                     A( K*K ), K )
  383:                CALL DPOTRF( 'L', K, A( K*K ), K, INFO )
  384:                IF( INFO.GT.0 )
  385:      $            INFO = INFO + K
  386: *
  387:             END IF
  388: *
  389:          END IF
  390: *
  391:       END IF
  392: *
  393:       RETURN
  394: *
  395: *     End of DPFTRF
  396: *
  397:       END

CVSweb interface <joel.bertrand@systella.fr>