File:  [local] / rpl / lapack / lapack / dpftrf.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 11:06:30 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_27, rpl-4_1_26, HEAD
Cohérence.

    1: *> \brief \b DPFTRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DPFTRF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpftrf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpftrf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpftrf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DPFTRF( TRANSR, UPLO, N, A, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          TRANSR, UPLO
   25: *       INTEGER            N, INFO
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   A( 0: * )
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> DPFTRF computes the Cholesky factorization of a real symmetric
   37: *> positive definite matrix A.
   38: *>
   39: *> The factorization has the form
   40: *>    A = U**T * U,  if UPLO = 'U', or
   41: *>    A = L  * L**T,  if UPLO = 'L',
   42: *> where U is an upper triangular matrix and L is lower triangular.
   43: *>
   44: *> This is the block version of the algorithm, calling Level 3 BLAS.
   45: *> \endverbatim
   46: *
   47: *  Arguments:
   48: *  ==========
   49: *
   50: *> \param[in] TRANSR
   51: *> \verbatim
   52: *>          TRANSR is CHARACTER*1
   53: *>          = 'N':  The Normal TRANSR of RFP A is stored;
   54: *>          = 'T':  The Transpose TRANSR of RFP A is stored.
   55: *> \endverbatim
   56: *>
   57: *> \param[in] UPLO
   58: *> \verbatim
   59: *>          UPLO is CHARACTER*1
   60: *>          = 'U':  Upper triangle of RFP A is stored;
   61: *>          = 'L':  Lower triangle of RFP A is stored.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] N
   65: *> \verbatim
   66: *>          N is INTEGER
   67: *>          The order of the matrix A.  N >= 0.
   68: *> \endverbatim
   69: *>
   70: *> \param[in,out] A
   71: *> \verbatim
   72: *>          A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 );
   73: *>          On entry, the symmetric matrix A in RFP format. RFP format is
   74: *>          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
   75: *>          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
   76: *>          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
   77: *>          the transpose of RFP A as defined when
   78: *>          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
   79: *>          follows: If UPLO = 'U' the RFP A contains the NT elements of
   80: *>          upper packed A. If UPLO = 'L' the RFP A contains the elements
   81: *>          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
   82: *>          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
   83: *>          is odd. See the Note below for more details.
   84: *>
   85: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
   86: *>          factorization RFP A = U**T*U or RFP A = L*L**T.
   87: *> \endverbatim
   88: *>
   89: *> \param[out] INFO
   90: *> \verbatim
   91: *>          INFO is INTEGER
   92: *>          = 0:  successful exit
   93: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   94: *>          > 0:  if INFO = i, the leading minor of order i is not
   95: *>                positive definite, and the factorization could not be
   96: *>                completed.
   97: *> \endverbatim
   98: *
   99: *  Authors:
  100: *  ========
  101: *
  102: *> \author Univ. of Tennessee
  103: *> \author Univ. of California Berkeley
  104: *> \author Univ. of Colorado Denver
  105: *> \author NAG Ltd.
  106: *
  107: *> \date December 2016
  108: *
  109: *> \ingroup doubleOTHERcomputational
  110: *
  111: *> \par Further Details:
  112: *  =====================
  113: *>
  114: *> \verbatim
  115: *>
  116: *>  We first consider Rectangular Full Packed (RFP) Format when N is
  117: *>  even. We give an example where N = 6.
  118: *>
  119: *>      AP is Upper             AP is Lower
  120: *>
  121: *>   00 01 02 03 04 05       00
  122: *>      11 12 13 14 15       10 11
  123: *>         22 23 24 25       20 21 22
  124: *>            33 34 35       30 31 32 33
  125: *>               44 45       40 41 42 43 44
  126: *>                  55       50 51 52 53 54 55
  127: *>
  128: *>
  129: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  130: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  131: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  132: *>  the transpose of the first three columns of AP upper.
  133: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  134: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  135: *>  the transpose of the last three columns of AP lower.
  136: *>  This covers the case N even and TRANSR = 'N'.
  137: *>
  138: *>         RFP A                   RFP A
  139: *>
  140: *>        03 04 05                33 43 53
  141: *>        13 14 15                00 44 54
  142: *>        23 24 25                10 11 55
  143: *>        33 34 35                20 21 22
  144: *>        00 44 45                30 31 32
  145: *>        01 11 55                40 41 42
  146: *>        02 12 22                50 51 52
  147: *>
  148: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  149: *>  transpose of RFP A above. One therefore gets:
  150: *>
  151: *>
  152: *>           RFP A                   RFP A
  153: *>
  154: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  155: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  156: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  157: *>
  158: *>
  159: *>  We then consider Rectangular Full Packed (RFP) Format when N is
  160: *>  odd. We give an example where N = 5.
  161: *>
  162: *>     AP is Upper                 AP is Lower
  163: *>
  164: *>   00 01 02 03 04              00
  165: *>      11 12 13 14              10 11
  166: *>         22 23 24              20 21 22
  167: *>            33 34              30 31 32 33
  168: *>               44              40 41 42 43 44
  169: *>
  170: *>
  171: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  172: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  173: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  174: *>  the transpose of the first two columns of AP upper.
  175: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  176: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  177: *>  the transpose of the last two columns of AP lower.
  178: *>  This covers the case N odd and TRANSR = 'N'.
  179: *>
  180: *>         RFP A                   RFP A
  181: *>
  182: *>        02 03 04                00 33 43
  183: *>        12 13 14                10 11 44
  184: *>        22 23 24                20 21 22
  185: *>        00 33 34                30 31 32
  186: *>        01 11 44                40 41 42
  187: *>
  188: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  189: *>  transpose of RFP A above. One therefore gets:
  190: *>
  191: *>           RFP A                   RFP A
  192: *>
  193: *>     02 12 22 00 01             00 10 20 30 40 50
  194: *>     03 13 23 33 11             33 11 21 31 41 51
  195: *>     04 14 24 34 44             43 44 22 32 42 52
  196: *> \endverbatim
  197: *>
  198: *  =====================================================================
  199:       SUBROUTINE DPFTRF( TRANSR, UPLO, N, A, INFO )
  200: *
  201: *  -- LAPACK computational routine (version 3.7.0) --
  202: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  203: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  204: *     December 2016
  205: *
  206: *     .. Scalar Arguments ..
  207:       CHARACTER          TRANSR, UPLO
  208:       INTEGER            N, INFO
  209: *     ..
  210: *     .. Array Arguments ..
  211:       DOUBLE PRECISION   A( 0: * )
  212: *
  213: *  =====================================================================
  214: *
  215: *     .. Parameters ..
  216:       DOUBLE PRECISION   ONE
  217:       PARAMETER          ( ONE = 1.0D+0 )
  218: *     ..
  219: *     .. Local Scalars ..
  220:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  221:       INTEGER            N1, N2, K
  222: *     ..
  223: *     .. External Functions ..
  224:       LOGICAL            LSAME
  225:       EXTERNAL           LSAME
  226: *     ..
  227: *     .. External Subroutines ..
  228:       EXTERNAL           XERBLA, DSYRK, DPOTRF, DTRSM
  229: *     ..
  230: *     .. Intrinsic Functions ..
  231:       INTRINSIC          MOD
  232: *     ..
  233: *     .. Executable Statements ..
  234: *
  235: *     Test the input parameters.
  236: *
  237:       INFO = 0
  238:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  239:       LOWER = LSAME( UPLO, 'L' )
  240:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  241:          INFO = -1
  242:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  243:          INFO = -2
  244:       ELSE IF( N.LT.0 ) THEN
  245:          INFO = -3
  246:       END IF
  247:       IF( INFO.NE.0 ) THEN
  248:          CALL XERBLA( 'DPFTRF', -INFO )
  249:          RETURN
  250:       END IF
  251: *
  252: *     Quick return if possible
  253: *
  254:       IF( N.EQ.0 )
  255:      $   RETURN
  256: *
  257: *     If N is odd, set NISODD = .TRUE.
  258: *     If N is even, set K = N/2 and NISODD = .FALSE.
  259: *
  260:       IF( MOD( N, 2 ).EQ.0 ) THEN
  261:          K = N / 2
  262:          NISODD = .FALSE.
  263:       ELSE
  264:          NISODD = .TRUE.
  265:       END IF
  266: *
  267: *     Set N1 and N2 depending on LOWER
  268: *
  269:       IF( LOWER ) THEN
  270:          N2 = N / 2
  271:          N1 = N - N2
  272:       ELSE
  273:          N1 = N / 2
  274:          N2 = N - N1
  275:       END IF
  276: *
  277: *     start execution: there are eight cases
  278: *
  279:       IF( NISODD ) THEN
  280: *
  281: *        N is odd
  282: *
  283:          IF( NORMALTRANSR ) THEN
  284: *
  285: *           N is odd and TRANSR = 'N'
  286: *
  287:             IF( LOWER ) THEN
  288: *
  289: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  290: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  291: *             T1 -> a(0), T2 -> a(n), S -> a(n1)
  292: *
  293:                CALL DPOTRF( 'L', N1, A( 0 ), N, INFO )
  294:                IF( INFO.GT.0 )
  295:      $            RETURN
  296:                CALL DTRSM( 'R', 'L', 'T', 'N', N2, N1, ONE, A( 0 ), N,
  297:      $                     A( N1 ), N )
  298:                CALL DSYRK( 'U', 'N', N2, N1, -ONE, A( N1 ), N, ONE,
  299:      $                     A( N ), N )
  300:                CALL DPOTRF( 'U', N2, A( N ), N, INFO )
  301:                IF( INFO.GT.0 )
  302:      $            INFO = INFO + N1
  303: *
  304:             ELSE
  305: *
  306: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  307: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  308: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
  309: *
  310:                CALL DPOTRF( 'L', N1, A( N2 ), N, INFO )
  311:                IF( INFO.GT.0 )
  312:      $            RETURN
  313:                CALL DTRSM( 'L', 'L', 'N', 'N', N1, N2, ONE, A( N2 ), N,
  314:      $                     A( 0 ), N )
  315:                CALL DSYRK( 'U', 'T', N2, N1, -ONE, A( 0 ), N, ONE,
  316:      $                     A( N1 ), N )
  317:                CALL DPOTRF( 'U', N2, A( N1 ), N, INFO )
  318:                IF( INFO.GT.0 )
  319:      $            INFO = INFO + N1
  320: *
  321:             END IF
  322: *
  323:          ELSE
  324: *
  325: *           N is odd and TRANSR = 'T'
  326: *
  327:             IF( LOWER ) THEN
  328: *
  329: *              SRPA for LOWER, TRANSPOSE and N is odd
  330: *              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
  331: *              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
  332: *
  333:                CALL DPOTRF( 'U', N1, A( 0 ), N1, INFO )
  334:                IF( INFO.GT.0 )
  335:      $            RETURN
  336:                CALL DTRSM( 'L', 'U', 'T', 'N', N1, N2, ONE, A( 0 ), N1,
  337:      $                     A( N1*N1 ), N1 )
  338:                CALL DSYRK( 'L', 'T', N2, N1, -ONE, A( N1*N1 ), N1, ONE,
  339:      $                     A( 1 ), N1 )
  340:                CALL DPOTRF( 'L', N2, A( 1 ), N1, INFO )
  341:                IF( INFO.GT.0 )
  342:      $            INFO = INFO + N1
  343: *
  344:             ELSE
  345: *
  346: *              SRPA for UPPER, TRANSPOSE and N is odd
  347: *              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
  348: *              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
  349: *
  350:                CALL DPOTRF( 'U', N1, A( N2*N2 ), N2, INFO )
  351:                IF( INFO.GT.0 )
  352:      $            RETURN
  353:                CALL DTRSM( 'R', 'U', 'N', 'N', N2, N1, ONE, A( N2*N2 ),
  354:      $                     N2, A( 0 ), N2 )
  355:                CALL DSYRK( 'L', 'N', N2, N1, -ONE, A( 0 ), N2, ONE,
  356:      $                     A( N1*N2 ), N2 )
  357:                CALL DPOTRF( 'L', N2, A( N1*N2 ), N2, INFO )
  358:                IF( INFO.GT.0 )
  359:      $            INFO = INFO + N1
  360: *
  361:             END IF
  362: *
  363:          END IF
  364: *
  365:       ELSE
  366: *
  367: *        N is even
  368: *
  369:          IF( NORMALTRANSR ) THEN
  370: *
  371: *           N is even and TRANSR = 'N'
  372: *
  373:             IF( LOWER ) THEN
  374: *
  375: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  376: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  377: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
  378: *
  379:                CALL DPOTRF( 'L', K, A( 1 ), N+1, INFO )
  380:                IF( INFO.GT.0 )
  381:      $            RETURN
  382:                CALL DTRSM( 'R', 'L', 'T', 'N', K, K, ONE, A( 1 ), N+1,
  383:      $                     A( K+1 ), N+1 )
  384:                CALL DSYRK( 'U', 'N', K, K, -ONE, A( K+1 ), N+1, ONE,
  385:      $                     A( 0 ), N+1 )
  386:                CALL DPOTRF( 'U', K, A( 0 ), N+1, INFO )
  387:                IF( INFO.GT.0 )
  388:      $            INFO = INFO + K
  389: *
  390:             ELSE
  391: *
  392: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  393: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  394: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
  395: *
  396:                CALL DPOTRF( 'L', K, A( K+1 ), N+1, INFO )
  397:                IF( INFO.GT.0 )
  398:      $            RETURN
  399:                CALL DTRSM( 'L', 'L', 'N', 'N', K, K, ONE, A( K+1 ),
  400:      $                     N+1, A( 0 ), N+1 )
  401:                CALL DSYRK( 'U', 'T', K, K, -ONE, A( 0 ), N+1, ONE,
  402:      $                     A( K ), N+1 )
  403:                CALL DPOTRF( 'U', K, A( K ), N+1, INFO )
  404:                IF( INFO.GT.0 )
  405:      $            INFO = INFO + K
  406: *
  407:             END IF
  408: *
  409:          ELSE
  410: *
  411: *           N is even and TRANSR = 'T'
  412: *
  413:             IF( LOWER ) THEN
  414: *
  415: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
  416: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  417: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  418: *
  419:                CALL DPOTRF( 'U', K, A( 0+K ), K, INFO )
  420:                IF( INFO.GT.0 )
  421:      $            RETURN
  422:                CALL DTRSM( 'L', 'U', 'T', 'N', K, K, ONE, A( K ), N1,
  423:      $                     A( K*( K+1 ) ), K )
  424:                CALL DSYRK( 'L', 'T', K, K, -ONE, A( K*( K+1 ) ), K, ONE,
  425:      $                     A( 0 ), K )
  426:                CALL DPOTRF( 'L', K, A( 0 ), K, INFO )
  427:                IF( INFO.GT.0 )
  428:      $            INFO = INFO + K
  429: *
  430:             ELSE
  431: *
  432: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
  433: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
  434: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  435: *
  436:                CALL DPOTRF( 'U', K, A( K*( K+1 ) ), K, INFO )
  437:                IF( INFO.GT.0 )
  438:      $            RETURN
  439:                CALL DTRSM( 'R', 'U', 'N', 'N', K, K, ONE,
  440:      $                     A( K*( K+1 ) ), K, A( 0 ), K )
  441:                CALL DSYRK( 'L', 'N', K, K, -ONE, A( 0 ), K, ONE,
  442:      $                     A( K*K ), K )
  443:                CALL DPOTRF( 'L', K, A( K*K ), K, INFO )
  444:                IF( INFO.GT.0 )
  445:      $            INFO = INFO + K
  446: *
  447:             END IF
  448: *
  449:          END IF
  450: *
  451:       END IF
  452: *
  453:       RETURN
  454: *
  455: *     End of DPFTRF
  456: *
  457:       END

CVSweb interface <joel.bertrand@systella.fr>