Annotation of rpl/lapack/lapack/dpftrf.f, revision 1.7

1.7     ! bertrand    1: *> \brief \b DPFTRF
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
1.1       bertrand    4: *
1.7     ! bertrand    5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
1.1       bertrand    7: *
1.7     ! bertrand    8: *> \htmlonly
        !             9: *> Download DPFTRF + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpftrf.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpftrf.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpftrf.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DPFTRF( TRANSR, UPLO, N, A, INFO )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       CHARACTER          TRANSR, UPLO
        !            25: *       INTEGER            N, INFO
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       DOUBLE PRECISION   A( 0: * )
        !            29: *  
        !            30: *
        !            31: *> \par Purpose:
        !            32: *  =============
        !            33: *>
        !            34: *> \verbatim
        !            35: *>
        !            36: *> DPFTRF computes the Cholesky factorization of a real symmetric
        !            37: *> positive definite matrix A.
        !            38: *>
        !            39: *> The factorization has the form
        !            40: *>    A = U**T * U,  if UPLO = 'U', or
        !            41: *>    A = L  * L**T,  if UPLO = 'L',
        !            42: *> where U is an upper triangular matrix and L is lower triangular.
        !            43: *>
        !            44: *> This is the block version of the algorithm, calling Level 3 BLAS.
        !            45: *> \endverbatim
        !            46: *
        !            47: *  Arguments:
        !            48: *  ==========
        !            49: *
        !            50: *> \param[in] TRANSR
        !            51: *> \verbatim
        !            52: *>          TRANSR is CHARACTER*1
        !            53: *>          = 'N':  The Normal TRANSR of RFP A is stored;
        !            54: *>          = 'T':  The Transpose TRANSR of RFP A is stored.
        !            55: *> \endverbatim
        !            56: *>
        !            57: *> \param[in] UPLO
        !            58: *> \verbatim
        !            59: *>          UPLO is CHARACTER*1
        !            60: *>          = 'U':  Upper triangle of RFP A is stored;
        !            61: *>          = 'L':  Lower triangle of RFP A is stored.
        !            62: *> \endverbatim
        !            63: *>
        !            64: *> \param[in] N
        !            65: *> \verbatim
        !            66: *>          N is INTEGER
        !            67: *>          The order of the matrix A.  N >= 0.
        !            68: *> \endverbatim
        !            69: *>
        !            70: *> \param[in,out] A
        !            71: *> \verbatim
        !            72: *>          A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 );
        !            73: *>          On entry, the symmetric matrix A in RFP format. RFP format is
        !            74: *>          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
        !            75: *>          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
        !            76: *>          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
        !            77: *>          the transpose of RFP A as defined when
        !            78: *>          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
        !            79: *>          follows: If UPLO = 'U' the RFP A contains the NT elements of
        !            80: *>          upper packed A. If UPLO = 'L' the RFP A contains the elements
        !            81: *>          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
        !            82: *>          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
        !            83: *>          is odd. See the Note below for more details.
        !            84: *>
        !            85: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
        !            86: *>          factorization RFP A = U**T*U or RFP A = L*L**T.
        !            87: *> \endverbatim
        !            88: *>
        !            89: *> \param[out] INFO
        !            90: *> \verbatim
        !            91: *>          INFO is INTEGER
        !            92: *>          = 0:  successful exit
        !            93: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !            94: *>          > 0:  if INFO = i, the leading minor of order i is not
        !            95: *>                positive definite, and the factorization could not be
        !            96: *>                completed.
        !            97: *> \endverbatim
        !            98: *
        !            99: *  Authors:
        !           100: *  ========
        !           101: *
        !           102: *> \author Univ. of Tennessee 
        !           103: *> \author Univ. of California Berkeley 
        !           104: *> \author Univ. of Colorado Denver 
        !           105: *> \author NAG Ltd. 
        !           106: *
        !           107: *> \date November 2011
        !           108: *
        !           109: *> \ingroup doubleOTHERcomputational
        !           110: *
        !           111: *> \par Further Details:
        !           112: *  =====================
        !           113: *>
        !           114: *> \verbatim
        !           115: *>
        !           116: *>  We first consider Rectangular Full Packed (RFP) Format when N is
        !           117: *>  even. We give an example where N = 6.
        !           118: *>
        !           119: *>      AP is Upper             AP is Lower
        !           120: *>
        !           121: *>   00 01 02 03 04 05       00
        !           122: *>      11 12 13 14 15       10 11
        !           123: *>         22 23 24 25       20 21 22
        !           124: *>            33 34 35       30 31 32 33
        !           125: *>               44 45       40 41 42 43 44
        !           126: *>                  55       50 51 52 53 54 55
        !           127: *>
        !           128: *>
        !           129: *>  Let TRANSR = 'N'. RFP holds AP as follows:
        !           130: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
        !           131: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
        !           132: *>  the transpose of the first three columns of AP upper.
        !           133: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
        !           134: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
        !           135: *>  the transpose of the last three columns of AP lower.
        !           136: *>  This covers the case N even and TRANSR = 'N'.
        !           137: *>
        !           138: *>         RFP A                   RFP A
        !           139: *>
        !           140: *>        03 04 05                33 43 53
        !           141: *>        13 14 15                00 44 54
        !           142: *>        23 24 25                10 11 55
        !           143: *>        33 34 35                20 21 22
        !           144: *>        00 44 45                30 31 32
        !           145: *>        01 11 55                40 41 42
        !           146: *>        02 12 22                50 51 52
        !           147: *>
        !           148: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
        !           149: *>  transpose of RFP A above. One therefore gets:
        !           150: *>
        !           151: *>
        !           152: *>           RFP A                   RFP A
        !           153: *>
        !           154: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
        !           155: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
        !           156: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
        !           157: *>
        !           158: *>
        !           159: *>  We then consider Rectangular Full Packed (RFP) Format when N is
        !           160: *>  odd. We give an example where N = 5.
        !           161: *>
        !           162: *>     AP is Upper                 AP is Lower
        !           163: *>
        !           164: *>   00 01 02 03 04              00
        !           165: *>      11 12 13 14              10 11
        !           166: *>         22 23 24              20 21 22
        !           167: *>            33 34              30 31 32 33
        !           168: *>               44              40 41 42 43 44
        !           169: *>
        !           170: *>
        !           171: *>  Let TRANSR = 'N'. RFP holds AP as follows:
        !           172: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
        !           173: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
        !           174: *>  the transpose of the first two columns of AP upper.
        !           175: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
        !           176: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
        !           177: *>  the transpose of the last two columns of AP lower.
        !           178: *>  This covers the case N odd and TRANSR = 'N'.
        !           179: *>
        !           180: *>         RFP A                   RFP A
        !           181: *>
        !           182: *>        02 03 04                00 33 43
        !           183: *>        12 13 14                10 11 44
        !           184: *>        22 23 24                20 21 22
        !           185: *>        00 33 34                30 31 32
        !           186: *>        01 11 44                40 41 42
        !           187: *>
        !           188: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
        !           189: *>  transpose of RFP A above. One therefore gets:
        !           190: *>
        !           191: *>           RFP A                   RFP A
        !           192: *>
        !           193: *>     02 12 22 00 01             00 10 20 30 40 50
        !           194: *>     03 13 23 33 11             33 11 21 31 41 51
        !           195: *>     04 14 24 34 44             43 44 22 32 42 52
        !           196: *> \endverbatim
        !           197: *>
        !           198: *  =====================================================================
        !           199:       SUBROUTINE DPFTRF( TRANSR, UPLO, N, A, INFO )
1.1       bertrand  200: *
1.7     ! bertrand  201: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  202: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    203: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.7     ! bertrand  204: *     November 2011
1.1       bertrand  205: *
                    206: *     .. Scalar Arguments ..
                    207:       CHARACTER          TRANSR, UPLO
                    208:       INTEGER            N, INFO
                    209: *     ..
                    210: *     .. Array Arguments ..
                    211:       DOUBLE PRECISION   A( 0: * )
                    212: *
                    213: *  =====================================================================
                    214: *
                    215: *     .. Parameters ..
                    216:       DOUBLE PRECISION   ONE
                    217:       PARAMETER          ( ONE = 1.0D+0 )
                    218: *     ..
                    219: *     .. Local Scalars ..
                    220:       LOGICAL            LOWER, NISODD, NORMALTRANSR
                    221:       INTEGER            N1, N2, K
                    222: *     ..
                    223: *     .. External Functions ..
                    224:       LOGICAL            LSAME
                    225:       EXTERNAL           LSAME
                    226: *     ..
                    227: *     .. External Subroutines ..
                    228:       EXTERNAL           XERBLA, DSYRK, DPOTRF, DTRSM
                    229: *     ..
                    230: *     .. Intrinsic Functions ..
                    231:       INTRINSIC          MOD
                    232: *     ..
                    233: *     .. Executable Statements ..
                    234: *
                    235: *     Test the input parameters.
                    236: *
                    237:       INFO = 0
                    238:       NORMALTRANSR = LSAME( TRANSR, 'N' )
                    239:       LOWER = LSAME( UPLO, 'L' )
                    240:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
                    241:          INFO = -1
                    242:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
                    243:          INFO = -2
                    244:       ELSE IF( N.LT.0 ) THEN
                    245:          INFO = -3
                    246:       END IF
                    247:       IF( INFO.NE.0 ) THEN
                    248:          CALL XERBLA( 'DPFTRF', -INFO )
                    249:          RETURN
                    250:       END IF
                    251: *
                    252: *     Quick return if possible
                    253: *
                    254:       IF( N.EQ.0 )
1.6       bertrand  255:      $   RETURN
1.1       bertrand  256: *
                    257: *     If N is odd, set NISODD = .TRUE.
                    258: *     If N is even, set K = N/2 and NISODD = .FALSE.
                    259: *
                    260:       IF( MOD( N, 2 ).EQ.0 ) THEN
                    261:          K = N / 2
                    262:          NISODD = .FALSE.
                    263:       ELSE
                    264:          NISODD = .TRUE.
                    265:       END IF
                    266: *
                    267: *     Set N1 and N2 depending on LOWER
                    268: *
                    269:       IF( LOWER ) THEN
                    270:          N2 = N / 2
                    271:          N1 = N - N2
                    272:       ELSE
                    273:          N1 = N / 2
                    274:          N2 = N - N1
                    275:       END IF
                    276: *
                    277: *     start execution: there are eight cases
                    278: *
                    279:       IF( NISODD ) THEN
                    280: *
                    281: *        N is odd
                    282: *
                    283:          IF( NORMALTRANSR ) THEN
                    284: *
                    285: *           N is odd and TRANSR = 'N'
                    286: *
                    287:             IF( LOWER ) THEN
                    288: *
                    289: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
                    290: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
                    291: *             T1 -> a(0), T2 -> a(n), S -> a(n1)
                    292: *
                    293:                CALL DPOTRF( 'L', N1, A( 0 ), N, INFO )
                    294:                IF( INFO.GT.0 )
1.6       bertrand  295:      $            RETURN
1.1       bertrand  296:                CALL DTRSM( 'R', 'L', 'T', 'N', N2, N1, ONE, A( 0 ), N,
1.6       bertrand  297:      $                     A( N1 ), N )
1.1       bertrand  298:                CALL DSYRK( 'U', 'N', N2, N1, -ONE, A( N1 ), N, ONE,
1.6       bertrand  299:      $                     A( N ), N )
1.1       bertrand  300:                CALL DPOTRF( 'U', N2, A( N ), N, INFO )
                    301:                IF( INFO.GT.0 )
1.6       bertrand  302:      $            INFO = INFO + N1
1.1       bertrand  303: *
                    304:             ELSE
                    305: *
                    306: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
                    307: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
                    308: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
                    309: *
                    310:                CALL DPOTRF( 'L', N1, A( N2 ), N, INFO )
                    311:                IF( INFO.GT.0 )
1.6       bertrand  312:      $            RETURN
1.1       bertrand  313:                CALL DTRSM( 'L', 'L', 'N', 'N', N1, N2, ONE, A( N2 ), N,
1.6       bertrand  314:      $                     A( 0 ), N )
1.1       bertrand  315:                CALL DSYRK( 'U', 'T', N2, N1, -ONE, A( 0 ), N, ONE,
1.6       bertrand  316:      $                     A( N1 ), N )
1.1       bertrand  317:                CALL DPOTRF( 'U', N2, A( N1 ), N, INFO )
                    318:                IF( INFO.GT.0 )
1.6       bertrand  319:      $            INFO = INFO + N1
1.1       bertrand  320: *
                    321:             END IF
                    322: *
                    323:          ELSE
                    324: *
                    325: *           N is odd and TRANSR = 'T'
                    326: *
                    327:             IF( LOWER ) THEN
                    328: *
                    329: *              SRPA for LOWER, TRANSPOSE and N is odd
                    330: *              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
                    331: *              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
                    332: *
                    333:                CALL DPOTRF( 'U', N1, A( 0 ), N1, INFO )
                    334:                IF( INFO.GT.0 )
1.6       bertrand  335:      $            RETURN
1.1       bertrand  336:                CALL DTRSM( 'L', 'U', 'T', 'N', N1, N2, ONE, A( 0 ), N1,
1.6       bertrand  337:      $                     A( N1*N1 ), N1 )
1.1       bertrand  338:                CALL DSYRK( 'L', 'T', N2, N1, -ONE, A( N1*N1 ), N1, ONE,
1.6       bertrand  339:      $                     A( 1 ), N1 )
1.1       bertrand  340:                CALL DPOTRF( 'L', N2, A( 1 ), N1, INFO )
                    341:                IF( INFO.GT.0 )
1.6       bertrand  342:      $            INFO = INFO + N1
1.1       bertrand  343: *
                    344:             ELSE
                    345: *
                    346: *              SRPA for UPPER, TRANSPOSE and N is odd
                    347: *              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
                    348: *              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
                    349: *
                    350:                CALL DPOTRF( 'U', N1, A( N2*N2 ), N2, INFO )
                    351:                IF( INFO.GT.0 )
1.6       bertrand  352:      $            RETURN
1.1       bertrand  353:                CALL DTRSM( 'R', 'U', 'N', 'N', N2, N1, ONE, A( N2*N2 ),
1.6       bertrand  354:      $                     N2, A( 0 ), N2 )
1.1       bertrand  355:                CALL DSYRK( 'L', 'N', N2, N1, -ONE, A( 0 ), N2, ONE,
1.6       bertrand  356:      $                     A( N1*N2 ), N2 )
1.1       bertrand  357:                CALL DPOTRF( 'L', N2, A( N1*N2 ), N2, INFO )
                    358:                IF( INFO.GT.0 )
1.6       bertrand  359:      $            INFO = INFO + N1
1.1       bertrand  360: *
                    361:             END IF
                    362: *
                    363:          END IF
                    364: *
                    365:       ELSE
                    366: *
                    367: *        N is even
                    368: *
                    369:          IF( NORMALTRANSR ) THEN
                    370: *
                    371: *           N is even and TRANSR = 'N'
                    372: *
                    373:             IF( LOWER ) THEN
                    374: *
                    375: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
                    376: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
                    377: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
                    378: *
                    379:                CALL DPOTRF( 'L', K, A( 1 ), N+1, INFO )
                    380:                IF( INFO.GT.0 )
1.6       bertrand  381:      $            RETURN
1.1       bertrand  382:                CALL DTRSM( 'R', 'L', 'T', 'N', K, K, ONE, A( 1 ), N+1,
1.6       bertrand  383:      $                     A( K+1 ), N+1 )
1.1       bertrand  384:                CALL DSYRK( 'U', 'N', K, K, -ONE, A( K+1 ), N+1, ONE,
1.6       bertrand  385:      $                     A( 0 ), N+1 )
1.1       bertrand  386:                CALL DPOTRF( 'U', K, A( 0 ), N+1, INFO )
                    387:                IF( INFO.GT.0 )
1.6       bertrand  388:      $            INFO = INFO + K
1.1       bertrand  389: *
                    390:             ELSE
                    391: *
                    392: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
                    393: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
                    394: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
                    395: *
                    396:                CALL DPOTRF( 'L', K, A( K+1 ), N+1, INFO )
                    397:                IF( INFO.GT.0 )
1.6       bertrand  398:      $            RETURN
1.1       bertrand  399:                CALL DTRSM( 'L', 'L', 'N', 'N', K, K, ONE, A( K+1 ),
1.6       bertrand  400:      $                     N+1, A( 0 ), N+1 )
1.1       bertrand  401:                CALL DSYRK( 'U', 'T', K, K, -ONE, A( 0 ), N+1, ONE,
1.6       bertrand  402:      $                     A( K ), N+1 )
1.1       bertrand  403:                CALL DPOTRF( 'U', K, A( K ), N+1, INFO )
                    404:                IF( INFO.GT.0 )
1.6       bertrand  405:      $            INFO = INFO + K
1.1       bertrand  406: *
                    407:             END IF
                    408: *
                    409:          ELSE
                    410: *
                    411: *           N is even and TRANSR = 'T'
                    412: *
                    413:             IF( LOWER ) THEN
                    414: *
                    415: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
                    416: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
                    417: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
                    418: *
                    419:                CALL DPOTRF( 'U', K, A( 0+K ), K, INFO )
                    420:                IF( INFO.GT.0 )
1.6       bertrand  421:      $            RETURN
1.1       bertrand  422:                CALL DTRSM( 'L', 'U', 'T', 'N', K, K, ONE, A( K ), N1,
1.6       bertrand  423:      $                     A( K*( K+1 ) ), K )
1.1       bertrand  424:                CALL DSYRK( 'L', 'T', K, K, -ONE, A( K*( K+1 ) ), K, ONE,
1.6       bertrand  425:      $                     A( 0 ), K )
1.1       bertrand  426:                CALL DPOTRF( 'L', K, A( 0 ), K, INFO )
                    427:                IF( INFO.GT.0 )
1.6       bertrand  428:      $            INFO = INFO + K
1.1       bertrand  429: *
                    430:             ELSE
                    431: *
                    432: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
                    433: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
                    434: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
                    435: *
                    436:                CALL DPOTRF( 'U', K, A( K*( K+1 ) ), K, INFO )
                    437:                IF( INFO.GT.0 )
1.6       bertrand  438:      $            RETURN
1.1       bertrand  439:                CALL DTRSM( 'R', 'U', 'N', 'N', K, K, ONE,
1.6       bertrand  440:      $                     A( K*( K+1 ) ), K, A( 0 ), K )
1.1       bertrand  441:                CALL DSYRK( 'L', 'N', K, K, -ONE, A( 0 ), K, ONE,
1.6       bertrand  442:      $                     A( K*K ), K )
1.1       bertrand  443:                CALL DPOTRF( 'L', K, A( K*K ), K, INFO )
                    444:                IF( INFO.GT.0 )
1.6       bertrand  445:      $            INFO = INFO + K
1.1       bertrand  446: *
                    447:             END IF
                    448: *
                    449:          END IF
                    450: *
                    451:       END IF
                    452: *
                    453:       RETURN
                    454: *
                    455: *     End of DPFTRF
                    456: *
                    457:       END

CVSweb interface <joel.bertrand@systella.fr>