Annotation of rpl/lapack/lapack/dpftrf.f, revision 1.13

1.7       bertrand    1: *> \brief \b DPFTRF
                      2: *
                      3: *  =========== DOCUMENTATION ===========
1.1       bertrand    4: *
1.13    ! bertrand    5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
1.1       bertrand    7: *
1.7       bertrand    8: *> \htmlonly
1.13    ! bertrand    9: *> Download DPFTRF + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpftrf.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpftrf.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpftrf.f">
1.7       bertrand   15: *> [TXT]</a>
1.13    ! bertrand   16: *> \endhtmlonly
1.7       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DPFTRF( TRANSR, UPLO, N, A, INFO )
1.13    ! bertrand   22: *
1.7       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          TRANSR, UPLO
                     25: *       INTEGER            N, INFO
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   A( 0: * )
1.13    ! bertrand   29: *
1.7       bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> DPFTRF computes the Cholesky factorization of a real symmetric
                     37: *> positive definite matrix A.
                     38: *>
                     39: *> The factorization has the form
                     40: *>    A = U**T * U,  if UPLO = 'U', or
                     41: *>    A = L  * L**T,  if UPLO = 'L',
                     42: *> where U is an upper triangular matrix and L is lower triangular.
                     43: *>
                     44: *> This is the block version of the algorithm, calling Level 3 BLAS.
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] TRANSR
                     51: *> \verbatim
                     52: *>          TRANSR is CHARACTER*1
                     53: *>          = 'N':  The Normal TRANSR of RFP A is stored;
                     54: *>          = 'T':  The Transpose TRANSR of RFP A is stored.
                     55: *> \endverbatim
                     56: *>
                     57: *> \param[in] UPLO
                     58: *> \verbatim
                     59: *>          UPLO is CHARACTER*1
                     60: *>          = 'U':  Upper triangle of RFP A is stored;
                     61: *>          = 'L':  Lower triangle of RFP A is stored.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] N
                     65: *> \verbatim
                     66: *>          N is INTEGER
                     67: *>          The order of the matrix A.  N >= 0.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in,out] A
                     71: *> \verbatim
                     72: *>          A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 );
                     73: *>          On entry, the symmetric matrix A in RFP format. RFP format is
                     74: *>          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
                     75: *>          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
                     76: *>          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
                     77: *>          the transpose of RFP A as defined when
                     78: *>          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
                     79: *>          follows: If UPLO = 'U' the RFP A contains the NT elements of
                     80: *>          upper packed A. If UPLO = 'L' the RFP A contains the elements
                     81: *>          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
                     82: *>          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
                     83: *>          is odd. See the Note below for more details.
                     84: *>
                     85: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
                     86: *>          factorization RFP A = U**T*U or RFP A = L*L**T.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[out] INFO
                     90: *> \verbatim
                     91: *>          INFO is INTEGER
                     92: *>          = 0:  successful exit
                     93: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                     94: *>          > 0:  if INFO = i, the leading minor of order i is not
                     95: *>                positive definite, and the factorization could not be
                     96: *>                completed.
                     97: *> \endverbatim
                     98: *
                     99: *  Authors:
                    100: *  ========
                    101: *
1.13    ! bertrand  102: *> \author Univ. of Tennessee
        !           103: *> \author Univ. of California Berkeley
        !           104: *> \author Univ. of Colorado Denver
        !           105: *> \author NAG Ltd.
1.7       bertrand  106: *
1.13    ! bertrand  107: *> \date December 2016
1.7       bertrand  108: *
                    109: *> \ingroup doubleOTHERcomputational
                    110: *
                    111: *> \par Further Details:
                    112: *  =====================
                    113: *>
                    114: *> \verbatim
                    115: *>
                    116: *>  We first consider Rectangular Full Packed (RFP) Format when N is
                    117: *>  even. We give an example where N = 6.
                    118: *>
                    119: *>      AP is Upper             AP is Lower
                    120: *>
                    121: *>   00 01 02 03 04 05       00
                    122: *>      11 12 13 14 15       10 11
                    123: *>         22 23 24 25       20 21 22
                    124: *>            33 34 35       30 31 32 33
                    125: *>               44 45       40 41 42 43 44
                    126: *>                  55       50 51 52 53 54 55
                    127: *>
                    128: *>
                    129: *>  Let TRANSR = 'N'. RFP holds AP as follows:
                    130: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
                    131: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
                    132: *>  the transpose of the first three columns of AP upper.
                    133: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
                    134: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
                    135: *>  the transpose of the last three columns of AP lower.
                    136: *>  This covers the case N even and TRANSR = 'N'.
                    137: *>
                    138: *>         RFP A                   RFP A
                    139: *>
                    140: *>        03 04 05                33 43 53
                    141: *>        13 14 15                00 44 54
                    142: *>        23 24 25                10 11 55
                    143: *>        33 34 35                20 21 22
                    144: *>        00 44 45                30 31 32
                    145: *>        01 11 55                40 41 42
                    146: *>        02 12 22                50 51 52
                    147: *>
                    148: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
                    149: *>  transpose of RFP A above. One therefore gets:
                    150: *>
                    151: *>
                    152: *>           RFP A                   RFP A
                    153: *>
                    154: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
                    155: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
                    156: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
                    157: *>
                    158: *>
                    159: *>  We then consider Rectangular Full Packed (RFP) Format when N is
                    160: *>  odd. We give an example where N = 5.
                    161: *>
                    162: *>     AP is Upper                 AP is Lower
                    163: *>
                    164: *>   00 01 02 03 04              00
                    165: *>      11 12 13 14              10 11
                    166: *>         22 23 24              20 21 22
                    167: *>            33 34              30 31 32 33
                    168: *>               44              40 41 42 43 44
                    169: *>
                    170: *>
                    171: *>  Let TRANSR = 'N'. RFP holds AP as follows:
                    172: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
                    173: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
                    174: *>  the transpose of the first two columns of AP upper.
                    175: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
                    176: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
                    177: *>  the transpose of the last two columns of AP lower.
                    178: *>  This covers the case N odd and TRANSR = 'N'.
                    179: *>
                    180: *>         RFP A                   RFP A
                    181: *>
                    182: *>        02 03 04                00 33 43
                    183: *>        12 13 14                10 11 44
                    184: *>        22 23 24                20 21 22
                    185: *>        00 33 34                30 31 32
                    186: *>        01 11 44                40 41 42
                    187: *>
                    188: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
                    189: *>  transpose of RFP A above. One therefore gets:
                    190: *>
                    191: *>           RFP A                   RFP A
                    192: *>
                    193: *>     02 12 22 00 01             00 10 20 30 40 50
                    194: *>     03 13 23 33 11             33 11 21 31 41 51
                    195: *>     04 14 24 34 44             43 44 22 32 42 52
                    196: *> \endverbatim
                    197: *>
                    198: *  =====================================================================
                    199:       SUBROUTINE DPFTRF( TRANSR, UPLO, N, A, INFO )
1.1       bertrand  200: *
1.13    ! bertrand  201: *  -- LAPACK computational routine (version 3.7.0) --
1.1       bertrand  202: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    203: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.13    ! bertrand  204: *     December 2016
1.1       bertrand  205: *
                    206: *     .. Scalar Arguments ..
                    207:       CHARACTER          TRANSR, UPLO
                    208:       INTEGER            N, INFO
                    209: *     ..
                    210: *     .. Array Arguments ..
                    211:       DOUBLE PRECISION   A( 0: * )
                    212: *
                    213: *  =====================================================================
                    214: *
                    215: *     .. Parameters ..
                    216:       DOUBLE PRECISION   ONE
                    217:       PARAMETER          ( ONE = 1.0D+0 )
                    218: *     ..
                    219: *     .. Local Scalars ..
                    220:       LOGICAL            LOWER, NISODD, NORMALTRANSR
                    221:       INTEGER            N1, N2, K
                    222: *     ..
                    223: *     .. External Functions ..
                    224:       LOGICAL            LSAME
                    225:       EXTERNAL           LSAME
                    226: *     ..
                    227: *     .. External Subroutines ..
                    228:       EXTERNAL           XERBLA, DSYRK, DPOTRF, DTRSM
                    229: *     ..
                    230: *     .. Intrinsic Functions ..
                    231:       INTRINSIC          MOD
                    232: *     ..
                    233: *     .. Executable Statements ..
                    234: *
                    235: *     Test the input parameters.
                    236: *
                    237:       INFO = 0
                    238:       NORMALTRANSR = LSAME( TRANSR, 'N' )
                    239:       LOWER = LSAME( UPLO, 'L' )
                    240:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
                    241:          INFO = -1
                    242:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
                    243:          INFO = -2
                    244:       ELSE IF( N.LT.0 ) THEN
                    245:          INFO = -3
                    246:       END IF
                    247:       IF( INFO.NE.0 ) THEN
                    248:          CALL XERBLA( 'DPFTRF', -INFO )
                    249:          RETURN
                    250:       END IF
                    251: *
                    252: *     Quick return if possible
                    253: *
                    254:       IF( N.EQ.0 )
1.6       bertrand  255:      $   RETURN
1.1       bertrand  256: *
                    257: *     If N is odd, set NISODD = .TRUE.
                    258: *     If N is even, set K = N/2 and NISODD = .FALSE.
                    259: *
                    260:       IF( MOD( N, 2 ).EQ.0 ) THEN
                    261:          K = N / 2
                    262:          NISODD = .FALSE.
                    263:       ELSE
                    264:          NISODD = .TRUE.
                    265:       END IF
                    266: *
                    267: *     Set N1 and N2 depending on LOWER
                    268: *
                    269:       IF( LOWER ) THEN
                    270:          N2 = N / 2
                    271:          N1 = N - N2
                    272:       ELSE
                    273:          N1 = N / 2
                    274:          N2 = N - N1
                    275:       END IF
                    276: *
                    277: *     start execution: there are eight cases
                    278: *
                    279:       IF( NISODD ) THEN
                    280: *
                    281: *        N is odd
                    282: *
                    283:          IF( NORMALTRANSR ) THEN
                    284: *
                    285: *           N is odd and TRANSR = 'N'
                    286: *
                    287:             IF( LOWER ) THEN
                    288: *
                    289: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
                    290: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
                    291: *             T1 -> a(0), T2 -> a(n), S -> a(n1)
                    292: *
                    293:                CALL DPOTRF( 'L', N1, A( 0 ), N, INFO )
                    294:                IF( INFO.GT.0 )
1.6       bertrand  295:      $            RETURN
1.1       bertrand  296:                CALL DTRSM( 'R', 'L', 'T', 'N', N2, N1, ONE, A( 0 ), N,
1.6       bertrand  297:      $                     A( N1 ), N )
1.1       bertrand  298:                CALL DSYRK( 'U', 'N', N2, N1, -ONE, A( N1 ), N, ONE,
1.6       bertrand  299:      $                     A( N ), N )
1.1       bertrand  300:                CALL DPOTRF( 'U', N2, A( N ), N, INFO )
                    301:                IF( INFO.GT.0 )
1.6       bertrand  302:      $            INFO = INFO + N1
1.1       bertrand  303: *
                    304:             ELSE
                    305: *
                    306: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
                    307: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
                    308: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
                    309: *
                    310:                CALL DPOTRF( 'L', N1, A( N2 ), N, INFO )
                    311:                IF( INFO.GT.0 )
1.6       bertrand  312:      $            RETURN
1.1       bertrand  313:                CALL DTRSM( 'L', 'L', 'N', 'N', N1, N2, ONE, A( N2 ), N,
1.6       bertrand  314:      $                     A( 0 ), N )
1.1       bertrand  315:                CALL DSYRK( 'U', 'T', N2, N1, -ONE, A( 0 ), N, ONE,
1.6       bertrand  316:      $                     A( N1 ), N )
1.1       bertrand  317:                CALL DPOTRF( 'U', N2, A( N1 ), N, INFO )
                    318:                IF( INFO.GT.0 )
1.6       bertrand  319:      $            INFO = INFO + N1
1.1       bertrand  320: *
                    321:             END IF
                    322: *
                    323:          ELSE
                    324: *
                    325: *           N is odd and TRANSR = 'T'
                    326: *
                    327:             IF( LOWER ) THEN
                    328: *
                    329: *              SRPA for LOWER, TRANSPOSE and N is odd
                    330: *              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
                    331: *              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
                    332: *
                    333:                CALL DPOTRF( 'U', N1, A( 0 ), N1, INFO )
                    334:                IF( INFO.GT.0 )
1.6       bertrand  335:      $            RETURN
1.1       bertrand  336:                CALL DTRSM( 'L', 'U', 'T', 'N', N1, N2, ONE, A( 0 ), N1,
1.6       bertrand  337:      $                     A( N1*N1 ), N1 )
1.1       bertrand  338:                CALL DSYRK( 'L', 'T', N2, N1, -ONE, A( N1*N1 ), N1, ONE,
1.6       bertrand  339:      $                     A( 1 ), N1 )
1.1       bertrand  340:                CALL DPOTRF( 'L', N2, A( 1 ), N1, INFO )
                    341:                IF( INFO.GT.0 )
1.6       bertrand  342:      $            INFO = INFO + N1
1.1       bertrand  343: *
                    344:             ELSE
                    345: *
                    346: *              SRPA for UPPER, TRANSPOSE and N is odd
                    347: *              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
                    348: *              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
                    349: *
                    350:                CALL DPOTRF( 'U', N1, A( N2*N2 ), N2, INFO )
                    351:                IF( INFO.GT.0 )
1.6       bertrand  352:      $            RETURN
1.1       bertrand  353:                CALL DTRSM( 'R', 'U', 'N', 'N', N2, N1, ONE, A( N2*N2 ),
1.6       bertrand  354:      $                     N2, A( 0 ), N2 )
1.1       bertrand  355:                CALL DSYRK( 'L', 'N', N2, N1, -ONE, A( 0 ), N2, ONE,
1.6       bertrand  356:      $                     A( N1*N2 ), N2 )
1.1       bertrand  357:                CALL DPOTRF( 'L', N2, A( N1*N2 ), N2, INFO )
                    358:                IF( INFO.GT.0 )
1.6       bertrand  359:      $            INFO = INFO + N1
1.1       bertrand  360: *
                    361:             END IF
                    362: *
                    363:          END IF
                    364: *
                    365:       ELSE
                    366: *
                    367: *        N is even
                    368: *
                    369:          IF( NORMALTRANSR ) THEN
                    370: *
                    371: *           N is even and TRANSR = 'N'
                    372: *
                    373:             IF( LOWER ) THEN
                    374: *
                    375: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
                    376: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
                    377: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
                    378: *
                    379:                CALL DPOTRF( 'L', K, A( 1 ), N+1, INFO )
                    380:                IF( INFO.GT.0 )
1.6       bertrand  381:      $            RETURN
1.1       bertrand  382:                CALL DTRSM( 'R', 'L', 'T', 'N', K, K, ONE, A( 1 ), N+1,
1.6       bertrand  383:      $                     A( K+1 ), N+1 )
1.1       bertrand  384:                CALL DSYRK( 'U', 'N', K, K, -ONE, A( K+1 ), N+1, ONE,
1.6       bertrand  385:      $                     A( 0 ), N+1 )
1.1       bertrand  386:                CALL DPOTRF( 'U', K, A( 0 ), N+1, INFO )
                    387:                IF( INFO.GT.0 )
1.6       bertrand  388:      $            INFO = INFO + K
1.1       bertrand  389: *
                    390:             ELSE
                    391: *
                    392: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
                    393: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
                    394: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
                    395: *
                    396:                CALL DPOTRF( 'L', K, A( K+1 ), N+1, INFO )
                    397:                IF( INFO.GT.0 )
1.6       bertrand  398:      $            RETURN
1.1       bertrand  399:                CALL DTRSM( 'L', 'L', 'N', 'N', K, K, ONE, A( K+1 ),
1.6       bertrand  400:      $                     N+1, A( 0 ), N+1 )
1.1       bertrand  401:                CALL DSYRK( 'U', 'T', K, K, -ONE, A( 0 ), N+1, ONE,
1.6       bertrand  402:      $                     A( K ), N+1 )
1.1       bertrand  403:                CALL DPOTRF( 'U', K, A( K ), N+1, INFO )
                    404:                IF( INFO.GT.0 )
1.6       bertrand  405:      $            INFO = INFO + K
1.1       bertrand  406: *
                    407:             END IF
                    408: *
                    409:          ELSE
                    410: *
                    411: *           N is even and TRANSR = 'T'
                    412: *
                    413:             IF( LOWER ) THEN
                    414: *
                    415: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
                    416: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
                    417: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
                    418: *
                    419:                CALL DPOTRF( 'U', K, A( 0+K ), K, INFO )
                    420:                IF( INFO.GT.0 )
1.6       bertrand  421:      $            RETURN
1.1       bertrand  422:                CALL DTRSM( 'L', 'U', 'T', 'N', K, K, ONE, A( K ), N1,
1.6       bertrand  423:      $                     A( K*( K+1 ) ), K )
1.1       bertrand  424:                CALL DSYRK( 'L', 'T', K, K, -ONE, A( K*( K+1 ) ), K, ONE,
1.6       bertrand  425:      $                     A( 0 ), K )
1.1       bertrand  426:                CALL DPOTRF( 'L', K, A( 0 ), K, INFO )
                    427:                IF( INFO.GT.0 )
1.6       bertrand  428:      $            INFO = INFO + K
1.1       bertrand  429: *
                    430:             ELSE
                    431: *
                    432: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
                    433: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
                    434: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
                    435: *
                    436:                CALL DPOTRF( 'U', K, A( K*( K+1 ) ), K, INFO )
                    437:                IF( INFO.GT.0 )
1.6       bertrand  438:      $            RETURN
1.1       bertrand  439:                CALL DTRSM( 'R', 'U', 'N', 'N', K, K, ONE,
1.6       bertrand  440:      $                     A( K*( K+1 ) ), K, A( 0 ), K )
1.1       bertrand  441:                CALL DSYRK( 'L', 'N', K, K, -ONE, A( 0 ), K, ONE,
1.6       bertrand  442:      $                     A( K*K ), K )
1.1       bertrand  443:                CALL DPOTRF( 'L', K, A( K*K ), K, INFO )
                    444:                IF( INFO.GT.0 )
1.6       bertrand  445:      $            INFO = INFO + K
1.1       bertrand  446: *
                    447:             END IF
                    448: *
                    449:          END IF
                    450: *
                    451:       END IF
                    452: *
                    453:       RETURN
                    454: *
                    455: *     End of DPFTRF
                    456: *
                    457:       END

CVSweb interface <joel.bertrand@systella.fr>