File:  [local] / rpl / lapack / lapack / dpbtrf.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:03 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DPBTRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DPBTRF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpbtrf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpbtrf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpbtrf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DPBTRF( UPLO, N, KD, AB, LDAB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, KD, LDAB, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   AB( LDAB, * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DPBTRF computes the Cholesky factorization of a real symmetric
   38: *> positive definite band matrix A.
   39: *>
   40: *> The factorization has the form
   41: *>    A = U**T * U,  if UPLO = 'U', or
   42: *>    A = L  * L**T,  if UPLO = 'L',
   43: *> where U is an upper triangular matrix and L is lower triangular.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] UPLO
   50: *> \verbatim
   51: *>          UPLO is CHARACTER*1
   52: *>          = 'U':  Upper triangle of A is stored;
   53: *>          = 'L':  Lower triangle of A is stored.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The order of the matrix A.  N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] KD
   63: *> \verbatim
   64: *>          KD is INTEGER
   65: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
   66: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in,out] AB
   70: *> \verbatim
   71: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
   72: *>          On entry, the upper or lower triangle of the symmetric band
   73: *>          matrix A, stored in the first KD+1 rows of the array.  The
   74: *>          j-th column of A is stored in the j-th column of the array AB
   75: *>          as follows:
   76: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   77: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   78: *>
   79: *>          On exit, if INFO = 0, the triangular factor U or L from the
   80: *>          Cholesky factorization A = U**T*U or A = L*L**T of the band
   81: *>          matrix A, in the same storage format as A.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] LDAB
   85: *> \verbatim
   86: *>          LDAB is INTEGER
   87: *>          The leading dimension of the array AB.  LDAB >= KD+1.
   88: *> \endverbatim
   89: *>
   90: *> \param[out] INFO
   91: *> \verbatim
   92: *>          INFO is INTEGER
   93: *>          = 0:  successful exit
   94: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   95: *>          > 0:  if INFO = i, the leading minor of order i is not
   96: *>                positive definite, and the factorization could not be
   97: *>                completed.
   98: *> \endverbatim
   99: *
  100: *  Authors:
  101: *  ========
  102: *
  103: *> \author Univ. of Tennessee
  104: *> \author Univ. of California Berkeley
  105: *> \author Univ. of Colorado Denver
  106: *> \author NAG Ltd.
  107: *
  108: *> \ingroup doubleOTHERcomputational
  109: *
  110: *> \par Further Details:
  111: *  =====================
  112: *>
  113: *> \verbatim
  114: *>
  115: *>  The band storage scheme is illustrated by the following example, when
  116: *>  N = 6, KD = 2, and UPLO = 'U':
  117: *>
  118: *>  On entry:                       On exit:
  119: *>
  120: *>      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
  121: *>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
  122: *>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
  123: *>
  124: *>  Similarly, if UPLO = 'L' the format of A is as follows:
  125: *>
  126: *>  On entry:                       On exit:
  127: *>
  128: *>     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
  129: *>     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
  130: *>     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *
  131: *>
  132: *>  Array elements marked * are not used by the routine.
  133: *> \endverbatim
  134: *
  135: *> \par Contributors:
  136: *  ==================
  137: *>
  138: *>  Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989
  139: *
  140: *  =====================================================================
  141:       SUBROUTINE DPBTRF( UPLO, N, KD, AB, LDAB, INFO )
  142: *
  143: *  -- LAPACK computational routine --
  144: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  145: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146: *
  147: *     .. Scalar Arguments ..
  148:       CHARACTER          UPLO
  149:       INTEGER            INFO, KD, LDAB, N
  150: *     ..
  151: *     .. Array Arguments ..
  152:       DOUBLE PRECISION   AB( LDAB, * )
  153: *     ..
  154: *
  155: *  =====================================================================
  156: *
  157: *     .. Parameters ..
  158:       DOUBLE PRECISION   ONE, ZERO
  159:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  160:       INTEGER            NBMAX, LDWORK
  161:       PARAMETER          ( NBMAX = 32, LDWORK = NBMAX+1 )
  162: *     ..
  163: *     .. Local Scalars ..
  164:       INTEGER            I, I2, I3, IB, II, J, JJ, NB
  165: *     ..
  166: *     .. Local Arrays ..
  167:       DOUBLE PRECISION   WORK( LDWORK, NBMAX )
  168: *     ..
  169: *     .. External Functions ..
  170:       LOGICAL            LSAME
  171:       INTEGER            ILAENV
  172:       EXTERNAL           LSAME, ILAENV
  173: *     ..
  174: *     .. External Subroutines ..
  175:       EXTERNAL           DGEMM, DPBTF2, DPOTF2, DSYRK, DTRSM, XERBLA
  176: *     ..
  177: *     .. Intrinsic Functions ..
  178:       INTRINSIC          MIN
  179: *     ..
  180: *     .. Executable Statements ..
  181: *
  182: *     Test the input parameters.
  183: *
  184:       INFO = 0
  185:       IF( ( .NOT.LSAME( UPLO, 'U' ) ) .AND.
  186:      $    ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN
  187:          INFO = -1
  188:       ELSE IF( N.LT.0 ) THEN
  189:          INFO = -2
  190:       ELSE IF( KD.LT.0 ) THEN
  191:          INFO = -3
  192:       ELSE IF( LDAB.LT.KD+1 ) THEN
  193:          INFO = -5
  194:       END IF
  195:       IF( INFO.NE.0 ) THEN
  196:          CALL XERBLA( 'DPBTRF', -INFO )
  197:          RETURN
  198:       END IF
  199: *
  200: *     Quick return if possible
  201: *
  202:       IF( N.EQ.0 )
  203:      $   RETURN
  204: *
  205: *     Determine the block size for this environment
  206: *
  207:       NB = ILAENV( 1, 'DPBTRF', UPLO, N, KD, -1, -1 )
  208: *
  209: *     The block size must not exceed the semi-bandwidth KD, and must not
  210: *     exceed the limit set by the size of the local array WORK.
  211: *
  212:       NB = MIN( NB, NBMAX )
  213: *
  214:       IF( NB.LE.1 .OR. NB.GT.KD ) THEN
  215: *
  216: *        Use unblocked code
  217: *
  218:          CALL DPBTF2( UPLO, N, KD, AB, LDAB, INFO )
  219:       ELSE
  220: *
  221: *        Use blocked code
  222: *
  223:          IF( LSAME( UPLO, 'U' ) ) THEN
  224: *
  225: *           Compute the Cholesky factorization of a symmetric band
  226: *           matrix, given the upper triangle of the matrix in band
  227: *           storage.
  228: *
  229: *           Zero the upper triangle of the work array.
  230: *
  231:             DO 20 J = 1, NB
  232:                DO 10 I = 1, J - 1
  233:                   WORK( I, J ) = ZERO
  234:    10          CONTINUE
  235:    20       CONTINUE
  236: *
  237: *           Process the band matrix one diagonal block at a time.
  238: *
  239:             DO 70 I = 1, N, NB
  240:                IB = MIN( NB, N-I+1 )
  241: *
  242: *              Factorize the diagonal block
  243: *
  244:                CALL DPOTF2( UPLO, IB, AB( KD+1, I ), LDAB-1, II )
  245:                IF( II.NE.0 ) THEN
  246:                   INFO = I + II - 1
  247:                   GO TO 150
  248:                END IF
  249:                IF( I+IB.LE.N ) THEN
  250: *
  251: *                 Update the relevant part of the trailing submatrix.
  252: *                 If A11 denotes the diagonal block which has just been
  253: *                 factorized, then we need to update the remaining
  254: *                 blocks in the diagram:
  255: *
  256: *                    A11   A12   A13
  257: *                          A22   A23
  258: *                                A33
  259: *
  260: *                 The numbers of rows and columns in the partitioning
  261: *                 are IB, I2, I3 respectively. The blocks A12, A22 and
  262: *                 A23 are empty if IB = KD. The upper triangle of A13
  263: *                 lies outside the band.
  264: *
  265:                   I2 = MIN( KD-IB, N-I-IB+1 )
  266:                   I3 = MIN( IB, N-I-KD+1 )
  267: *
  268:                   IF( I2.GT.0 ) THEN
  269: *
  270: *                    Update A12
  271: *
  272:                      CALL DTRSM( 'Left', 'Upper', 'Transpose',
  273:      $                           'Non-unit', IB, I2, ONE, AB( KD+1, I ),
  274:      $                           LDAB-1, AB( KD+1-IB, I+IB ), LDAB-1 )
  275: *
  276: *                    Update A22
  277: *
  278:                      CALL DSYRK( 'Upper', 'Transpose', I2, IB, -ONE,
  279:      $                           AB( KD+1-IB, I+IB ), LDAB-1, ONE,
  280:      $                           AB( KD+1, I+IB ), LDAB-1 )
  281:                   END IF
  282: *
  283:                   IF( I3.GT.0 ) THEN
  284: *
  285: *                    Copy the lower triangle of A13 into the work array.
  286: *
  287:                      DO 40 JJ = 1, I3
  288:                         DO 30 II = JJ, IB
  289:                            WORK( II, JJ ) = AB( II-JJ+1, JJ+I+KD-1 )
  290:    30                   CONTINUE
  291:    40                CONTINUE
  292: *
  293: *                    Update A13 (in the work array).
  294: *
  295:                      CALL DTRSM( 'Left', 'Upper', 'Transpose',
  296:      $                           'Non-unit', IB, I3, ONE, AB( KD+1, I ),
  297:      $                           LDAB-1, WORK, LDWORK )
  298: *
  299: *                    Update A23
  300: *
  301:                      IF( I2.GT.0 )
  302:      $                  CALL DGEMM( 'Transpose', 'No Transpose', I2, I3,
  303:      $                              IB, -ONE, AB( KD+1-IB, I+IB ),
  304:      $                              LDAB-1, WORK, LDWORK, ONE,
  305:      $                              AB( 1+IB, I+KD ), LDAB-1 )
  306: *
  307: *                    Update A33
  308: *
  309:                      CALL DSYRK( 'Upper', 'Transpose', I3, IB, -ONE,
  310:      $                           WORK, LDWORK, ONE, AB( KD+1, I+KD ),
  311:      $                           LDAB-1 )
  312: *
  313: *                    Copy the lower triangle of A13 back into place.
  314: *
  315:                      DO 60 JJ = 1, I3
  316:                         DO 50 II = JJ, IB
  317:                            AB( II-JJ+1, JJ+I+KD-1 ) = WORK( II, JJ )
  318:    50                   CONTINUE
  319:    60                CONTINUE
  320:                   END IF
  321:                END IF
  322:    70       CONTINUE
  323:          ELSE
  324: *
  325: *           Compute the Cholesky factorization of a symmetric band
  326: *           matrix, given the lower triangle of the matrix in band
  327: *           storage.
  328: *
  329: *           Zero the lower triangle of the work array.
  330: *
  331:             DO 90 J = 1, NB
  332:                DO 80 I = J + 1, NB
  333:                   WORK( I, J ) = ZERO
  334:    80          CONTINUE
  335:    90       CONTINUE
  336: *
  337: *           Process the band matrix one diagonal block at a time.
  338: *
  339:             DO 140 I = 1, N, NB
  340:                IB = MIN( NB, N-I+1 )
  341: *
  342: *              Factorize the diagonal block
  343: *
  344:                CALL DPOTF2( UPLO, IB, AB( 1, I ), LDAB-1, II )
  345:                IF( II.NE.0 ) THEN
  346:                   INFO = I + II - 1
  347:                   GO TO 150
  348:                END IF
  349:                IF( I+IB.LE.N ) THEN
  350: *
  351: *                 Update the relevant part of the trailing submatrix.
  352: *                 If A11 denotes the diagonal block which has just been
  353: *                 factorized, then we need to update the remaining
  354: *                 blocks in the diagram:
  355: *
  356: *                    A11
  357: *                    A21   A22
  358: *                    A31   A32   A33
  359: *
  360: *                 The numbers of rows and columns in the partitioning
  361: *                 are IB, I2, I3 respectively. The blocks A21, A22 and
  362: *                 A32 are empty if IB = KD. The lower triangle of A31
  363: *                 lies outside the band.
  364: *
  365:                   I2 = MIN( KD-IB, N-I-IB+1 )
  366:                   I3 = MIN( IB, N-I-KD+1 )
  367: *
  368:                   IF( I2.GT.0 ) THEN
  369: *
  370: *                    Update A21
  371: *
  372:                      CALL DTRSM( 'Right', 'Lower', 'Transpose',
  373:      $                           'Non-unit', I2, IB, ONE, AB( 1, I ),
  374:      $                           LDAB-1, AB( 1+IB, I ), LDAB-1 )
  375: *
  376: *                    Update A22
  377: *
  378:                      CALL DSYRK( 'Lower', 'No Transpose', I2, IB, -ONE,
  379:      $                           AB( 1+IB, I ), LDAB-1, ONE,
  380:      $                           AB( 1, I+IB ), LDAB-1 )
  381:                   END IF
  382: *
  383:                   IF( I3.GT.0 ) THEN
  384: *
  385: *                    Copy the upper triangle of A31 into the work array.
  386: *
  387:                      DO 110 JJ = 1, IB
  388:                         DO 100 II = 1, MIN( JJ, I3 )
  389:                            WORK( II, JJ ) = AB( KD+1-JJ+II, JJ+I-1 )
  390:   100                   CONTINUE
  391:   110                CONTINUE
  392: *
  393: *                    Update A31 (in the work array).
  394: *
  395:                      CALL DTRSM( 'Right', 'Lower', 'Transpose',
  396:      $                           'Non-unit', I3, IB, ONE, AB( 1, I ),
  397:      $                           LDAB-1, WORK, LDWORK )
  398: *
  399: *                    Update A32
  400: *
  401:                      IF( I2.GT.0 )
  402:      $                  CALL DGEMM( 'No transpose', 'Transpose', I3, I2,
  403:      $                              IB, -ONE, WORK, LDWORK,
  404:      $                              AB( 1+IB, I ), LDAB-1, ONE,
  405:      $                              AB( 1+KD-IB, I+IB ), LDAB-1 )
  406: *
  407: *                    Update A33
  408: *
  409:                      CALL DSYRK( 'Lower', 'No Transpose', I3, IB, -ONE,
  410:      $                           WORK, LDWORK, ONE, AB( 1, I+KD ),
  411:      $                           LDAB-1 )
  412: *
  413: *                    Copy the upper triangle of A31 back into place.
  414: *
  415:                      DO 130 JJ = 1, IB
  416:                         DO 120 II = 1, MIN( JJ, I3 )
  417:                            AB( KD+1-JJ+II, JJ+I-1 ) = WORK( II, JJ )
  418:   120                   CONTINUE
  419:   130                CONTINUE
  420:                   END IF
  421:                END IF
  422:   140       CONTINUE
  423:          END IF
  424:       END IF
  425:       RETURN
  426: *
  427:   150 CONTINUE
  428:       RETURN
  429: *
  430: *     End of DPBTRF
  431: *
  432:       END

CVSweb interface <joel.bertrand@systella.fr>