File:  [local] / rpl / lapack / lapack / dpbsvx.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:35 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE DPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
    2:      $                   EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
    3:      $                   WORK, IWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          EQUED, FACT, UPLO
   12:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
   13:       DOUBLE PRECISION   RCOND
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IWORK( * )
   17:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   18:      $                   BERR( * ), FERR( * ), S( * ), WORK( * ),
   19:      $                   X( LDX, * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  DPBSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
   26: *  compute the solution to a real system of linear equations
   27: *     A * X = B,
   28: *  where A is an N-by-N symmetric positive definite band matrix and X
   29: *  and B are N-by-NRHS matrices.
   30: *
   31: *  Error bounds on the solution and a condition estimate are also
   32: *  provided.
   33: *
   34: *  Description
   35: *  ===========
   36: *
   37: *  The following steps are performed:
   38: *
   39: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
   40: *     the system:
   41: *        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
   42: *     Whether or not the system will be equilibrated depends on the
   43: *     scaling of the matrix A, but if equilibration is used, A is
   44: *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
   45: *
   46: *  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
   47: *     factor the matrix A (after equilibration if FACT = 'E') as
   48: *        A = U**T * U,  if UPLO = 'U', or
   49: *        A = L * L**T,  if UPLO = 'L',
   50: *     where U is an upper triangular band matrix, and L is a lower
   51: *     triangular band matrix.
   52: *
   53: *  3. If the leading i-by-i principal minor is not positive definite,
   54: *     then the routine returns with INFO = i. Otherwise, the factored
   55: *     form of A is used to estimate the condition number of the matrix
   56: *     A.  If the reciprocal of the condition number is less than machine
   57: *     precision, INFO = N+1 is returned as a warning, but the routine
   58: *     still goes on to solve for X and compute error bounds as
   59: *     described below.
   60: *
   61: *  4. The system of equations is solved for X using the factored form
   62: *     of A.
   63: *
   64: *  5. Iterative refinement is applied to improve the computed solution
   65: *     matrix and calculate error bounds and backward error estimates
   66: *     for it.
   67: *
   68: *  6. If equilibration was used, the matrix X is premultiplied by
   69: *     diag(S) so that it solves the original system before
   70: *     equilibration.
   71: *
   72: *  Arguments
   73: *  =========
   74: *
   75: *  FACT    (input) CHARACTER*1
   76: *          Specifies whether or not the factored form of the matrix A is
   77: *          supplied on entry, and if not, whether the matrix A should be
   78: *          equilibrated before it is factored.
   79: *          = 'F':  On entry, AFB contains the factored form of A.
   80: *                  If EQUED = 'Y', the matrix A has been equilibrated
   81: *                  with scaling factors given by S.  AB and AFB will not
   82: *                  be modified.
   83: *          = 'N':  The matrix A will be copied to AFB and factored.
   84: *          = 'E':  The matrix A will be equilibrated if necessary, then
   85: *                  copied to AFB and factored.
   86: *
   87: *  UPLO    (input) CHARACTER*1
   88: *          = 'U':  Upper triangle of A is stored;
   89: *          = 'L':  Lower triangle of A is stored.
   90: *
   91: *  N       (input) INTEGER
   92: *          The number of linear equations, i.e., the order of the
   93: *          matrix A.  N >= 0.
   94: *
   95: *  KD      (input) INTEGER
   96: *          The number of superdiagonals of the matrix A if UPLO = 'U',
   97: *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   98: *
   99: *  NRHS    (input) INTEGER
  100: *          The number of right-hand sides, i.e., the number of columns
  101: *          of the matrices B and X.  NRHS >= 0.
  102: *
  103: *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
  104: *          On entry, the upper or lower triangle of the symmetric band
  105: *          matrix A, stored in the first KD+1 rows of the array, except
  106: *          if FACT = 'F' and EQUED = 'Y', then A must contain the
  107: *          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A
  108: *          is stored in the j-th column of the array AB as follows:
  109: *          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
  110: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
  111: *          See below for further details.
  112: *
  113: *          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  114: *          diag(S)*A*diag(S).
  115: *
  116: *  LDAB    (input) INTEGER
  117: *          The leading dimension of the array A.  LDAB >= KD+1.
  118: *
  119: *  AFB     (input or output) DOUBLE PRECISION array, dimension (LDAFB,N)
  120: *          If FACT = 'F', then AFB is an input argument and on entry
  121: *          contains the triangular factor U or L from the Cholesky
  122: *          factorization A = U**T*U or A = L*L**T of the band matrix
  123: *          A, in the same storage format as A (see AB).  If EQUED = 'Y',
  124: *          then AFB is the factored form of the equilibrated matrix A.
  125: *
  126: *          If FACT = 'N', then AFB is an output argument and on exit
  127: *          returns the triangular factor U or L from the Cholesky
  128: *          factorization A = U**T*U or A = L*L**T.
  129: *
  130: *          If FACT = 'E', then AFB is an output argument and on exit
  131: *          returns the triangular factor U or L from the Cholesky
  132: *          factorization A = U**T*U or A = L*L**T of the equilibrated
  133: *          matrix A (see the description of A for the form of the
  134: *          equilibrated matrix).
  135: *
  136: *  LDAFB   (input) INTEGER
  137: *          The leading dimension of the array AFB.  LDAFB >= KD+1.
  138: *
  139: *  EQUED   (input or output) CHARACTER*1
  140: *          Specifies the form of equilibration that was done.
  141: *          = 'N':  No equilibration (always true if FACT = 'N').
  142: *          = 'Y':  Equilibration was done, i.e., A has been replaced by
  143: *                  diag(S) * A * diag(S).
  144: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
  145: *          output argument.
  146: *
  147: *  S       (input or output) DOUBLE PRECISION array, dimension (N)
  148: *          The scale factors for A; not accessed if EQUED = 'N'.  S is
  149: *          an input argument if FACT = 'F'; otherwise, S is an output
  150: *          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
  151: *          must be positive.
  152: *
  153: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
  154: *          On entry, the N-by-NRHS right hand side matrix B.
  155: *          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
  156: *          B is overwritten by diag(S) * B.
  157: *
  158: *  LDB     (input) INTEGER
  159: *          The leading dimension of the array B.  LDB >= max(1,N).
  160: *
  161: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
  162: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
  163: *          the original system of equations.  Note that if EQUED = 'Y',
  164: *          A and B are modified on exit, and the solution to the
  165: *          equilibrated system is inv(diag(S))*X.
  166: *
  167: *  LDX     (input) INTEGER
  168: *          The leading dimension of the array X.  LDX >= max(1,N).
  169: *
  170: *  RCOND   (output) DOUBLE PRECISION
  171: *          The estimate of the reciprocal condition number of the matrix
  172: *          A after equilibration (if done).  If RCOND is less than the
  173: *          machine precision (in particular, if RCOND = 0), the matrix
  174: *          is singular to working precision.  This condition is
  175: *          indicated by a return code of INFO > 0.
  176: *
  177: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  178: *          The estimated forward error bound for each solution vector
  179: *          X(j) (the j-th column of the solution matrix X).
  180: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
  181: *          is an estimated upper bound for the magnitude of the largest
  182: *          element in (X(j) - XTRUE) divided by the magnitude of the
  183: *          largest element in X(j).  The estimate is as reliable as
  184: *          the estimate for RCOND, and is almost always a slight
  185: *          overestimate of the true error.
  186: *
  187: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  188: *          The componentwise relative backward error of each solution
  189: *          vector X(j) (i.e., the smallest relative change in
  190: *          any element of A or B that makes X(j) an exact solution).
  191: *
  192: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
  193: *
  194: *  IWORK   (workspace) INTEGER array, dimension (N)
  195: *
  196: *  INFO    (output) INTEGER
  197: *          = 0:  successful exit
  198: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  199: *          > 0:  if INFO = i, and i is
  200: *                <= N:  the leading minor of order i of A is
  201: *                       not positive definite, so the factorization
  202: *                       could not be completed, and the solution has not
  203: *                       been computed. RCOND = 0 is returned.
  204: *                = N+1: U is nonsingular, but RCOND is less than machine
  205: *                       precision, meaning that the matrix is singular
  206: *                       to working precision.  Nevertheless, the
  207: *                       solution and error bounds are computed because
  208: *                       there are a number of situations where the
  209: *                       computed solution can be more accurate than the
  210: *                       value of RCOND would suggest.
  211: *
  212: *  Further Details
  213: *  ===============
  214: *
  215: *  The band storage scheme is illustrated by the following example, when
  216: *  N = 6, KD = 2, and UPLO = 'U':
  217: *
  218: *  Two-dimensional storage of the symmetric matrix A:
  219: *
  220: *     a11  a12  a13
  221: *          a22  a23  a24
  222: *               a33  a34  a35
  223: *                    a44  a45  a46
  224: *                         a55  a56
  225: *     (aij=conjg(aji))         a66
  226: *
  227: *  Band storage of the upper triangle of A:
  228: *
  229: *      *    *   a13  a24  a35  a46
  230: *      *   a12  a23  a34  a45  a56
  231: *     a11  a22  a33  a44  a55  a66
  232: *
  233: *  Similarly, if UPLO = 'L' the format of A is as follows:
  234: *
  235: *     a11  a22  a33  a44  a55  a66
  236: *     a21  a32  a43  a54  a65   *
  237: *     a31  a42  a53  a64   *    *
  238: *
  239: *  Array elements marked * are not used by the routine.
  240: *
  241: *  =====================================================================
  242: *
  243: *     .. Parameters ..
  244:       DOUBLE PRECISION   ZERO, ONE
  245:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  246: *     ..
  247: *     .. Local Scalars ..
  248:       LOGICAL            EQUIL, NOFACT, RCEQU, UPPER
  249:       INTEGER            I, INFEQU, J, J1, J2
  250:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
  251: *     ..
  252: *     .. External Functions ..
  253:       LOGICAL            LSAME
  254:       DOUBLE PRECISION   DLAMCH, DLANSB
  255:       EXTERNAL           LSAME, DLAMCH, DLANSB
  256: *     ..
  257: *     .. External Subroutines ..
  258:       EXTERNAL           DCOPY, DLACPY, DLAQSB, DPBCON, DPBEQU, DPBRFS,
  259:      $                   DPBTRF, DPBTRS, XERBLA
  260: *     ..
  261: *     .. Intrinsic Functions ..
  262:       INTRINSIC          MAX, MIN
  263: *     ..
  264: *     .. Executable Statements ..
  265: *
  266:       INFO = 0
  267:       NOFACT = LSAME( FACT, 'N' )
  268:       EQUIL = LSAME( FACT, 'E' )
  269:       UPPER = LSAME( UPLO, 'U' )
  270:       IF( NOFACT .OR. EQUIL ) THEN
  271:          EQUED = 'N'
  272:          RCEQU = .FALSE.
  273:       ELSE
  274:          RCEQU = LSAME( EQUED, 'Y' )
  275:          SMLNUM = DLAMCH( 'Safe minimum' )
  276:          BIGNUM = ONE / SMLNUM
  277:       END IF
  278: *
  279: *     Test the input parameters.
  280: *
  281:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  282:      $     THEN
  283:          INFO = -1
  284:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  285:          INFO = -2
  286:       ELSE IF( N.LT.0 ) THEN
  287:          INFO = -3
  288:       ELSE IF( KD.LT.0 ) THEN
  289:          INFO = -4
  290:       ELSE IF( NRHS.LT.0 ) THEN
  291:          INFO = -5
  292:       ELSE IF( LDAB.LT.KD+1 ) THEN
  293:          INFO = -7
  294:       ELSE IF( LDAFB.LT.KD+1 ) THEN
  295:          INFO = -9
  296:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  297:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  298:          INFO = -10
  299:       ELSE
  300:          IF( RCEQU ) THEN
  301:             SMIN = BIGNUM
  302:             SMAX = ZERO
  303:             DO 10 J = 1, N
  304:                SMIN = MIN( SMIN, S( J ) )
  305:                SMAX = MAX( SMAX, S( J ) )
  306:    10       CONTINUE
  307:             IF( SMIN.LE.ZERO ) THEN
  308:                INFO = -11
  309:             ELSE IF( N.GT.0 ) THEN
  310:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  311:             ELSE
  312:                SCOND = ONE
  313:             END IF
  314:          END IF
  315:          IF( INFO.EQ.0 ) THEN
  316:             IF( LDB.LT.MAX( 1, N ) ) THEN
  317:                INFO = -13
  318:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  319:                INFO = -15
  320:             END IF
  321:          END IF
  322:       END IF
  323: *
  324:       IF( INFO.NE.0 ) THEN
  325:          CALL XERBLA( 'DPBSVX', -INFO )
  326:          RETURN
  327:       END IF
  328: *
  329:       IF( EQUIL ) THEN
  330: *
  331: *        Compute row and column scalings to equilibrate the matrix A.
  332: *
  333:          CALL DPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFEQU )
  334:          IF( INFEQU.EQ.0 ) THEN
  335: *
  336: *           Equilibrate the matrix.
  337: *
  338:             CALL DLAQSB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
  339:             RCEQU = LSAME( EQUED, 'Y' )
  340:          END IF
  341:       END IF
  342: *
  343: *     Scale the right-hand side.
  344: *
  345:       IF( RCEQU ) THEN
  346:          DO 30 J = 1, NRHS
  347:             DO 20 I = 1, N
  348:                B( I, J ) = S( I )*B( I, J )
  349:    20       CONTINUE
  350:    30    CONTINUE
  351:       END IF
  352: *
  353:       IF( NOFACT .OR. EQUIL ) THEN
  354: *
  355: *        Compute the Cholesky factorization A = U'*U or A = L*L'.
  356: *
  357:          IF( UPPER ) THEN
  358:             DO 40 J = 1, N
  359:                J1 = MAX( J-KD, 1 )
  360:                CALL DCOPY( J-J1+1, AB( KD+1-J+J1, J ), 1,
  361:      $                     AFB( KD+1-J+J1, J ), 1 )
  362:    40       CONTINUE
  363:          ELSE
  364:             DO 50 J = 1, N
  365:                J2 = MIN( J+KD, N )
  366:                CALL DCOPY( J2-J+1, AB( 1, J ), 1, AFB( 1, J ), 1 )
  367:    50       CONTINUE
  368:          END IF
  369: *
  370:          CALL DPBTRF( UPLO, N, KD, AFB, LDAFB, INFO )
  371: *
  372: *        Return if INFO is non-zero.
  373: *
  374:          IF( INFO.GT.0 )THEN
  375:             RCOND = ZERO
  376:             RETURN
  377:          END IF
  378:       END IF
  379: *
  380: *     Compute the norm of the matrix A.
  381: *
  382:       ANORM = DLANSB( '1', UPLO, N, KD, AB, LDAB, WORK )
  383: *
  384: *     Compute the reciprocal of the condition number of A.
  385: *
  386:       CALL DPBCON( UPLO, N, KD, AFB, LDAFB, ANORM, RCOND, WORK, IWORK,
  387:      $             INFO )
  388: *
  389: *     Compute the solution matrix X.
  390: *
  391:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  392:       CALL DPBTRS( UPLO, N, KD, NRHS, AFB, LDAFB, X, LDX, INFO )
  393: *
  394: *     Use iterative refinement to improve the computed solution and
  395: *     compute error bounds and backward error estimates for it.
  396: *
  397:       CALL DPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X,
  398:      $             LDX, FERR, BERR, WORK, IWORK, INFO )
  399: *
  400: *     Transform the solution matrix X to a solution of the original
  401: *     system.
  402: *
  403:       IF( RCEQU ) THEN
  404:          DO 70 J = 1, NRHS
  405:             DO 60 I = 1, N
  406:                X( I, J ) = S( I )*X( I, J )
  407:    60       CONTINUE
  408:    70    CONTINUE
  409:          DO 80 J = 1, NRHS
  410:             FERR( J ) = FERR( J ) / SCOND
  411:    80    CONTINUE
  412:       END IF
  413: *
  414: *     Set INFO = N+1 if the matrix is singular to working precision.
  415: *
  416:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  417:      $   INFO = N + 1
  418: *
  419:       RETURN
  420: *
  421: *     End of DPBSVX
  422: *
  423:       END

CVSweb interface <joel.bertrand@systella.fr>