Annotation of rpl/lapack/lapack/dpbsvx.f, revision 1.9

1.9     ! bertrand    1: *> \brief <b> DPBSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DPBSVX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpbsvx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpbsvx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpbsvx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
        !            22: *                          EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
        !            23: *                          WORK, IWORK, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          EQUED, FACT, UPLO
        !            27: *       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
        !            28: *       DOUBLE PRECISION   RCOND
        !            29: *       ..
        !            30: *       .. Array Arguments ..
        !            31: *       INTEGER            IWORK( * )
        !            32: *       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
        !            33: *      $                   BERR( * ), FERR( * ), S( * ), WORK( * ),
        !            34: *      $                   X( LDX, * )
        !            35: *       ..
        !            36: *  
        !            37: *
        !            38: *> \par Purpose:
        !            39: *  =============
        !            40: *>
        !            41: *> \verbatim
        !            42: *>
        !            43: *> DPBSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
        !            44: *> compute the solution to a real system of linear equations
        !            45: *>    A * X = B,
        !            46: *> where A is an N-by-N symmetric positive definite band matrix and X
        !            47: *> and B are N-by-NRHS matrices.
        !            48: *>
        !            49: *> Error bounds on the solution and a condition estimate are also
        !            50: *> provided.
        !            51: *> \endverbatim
        !            52: *
        !            53: *> \par Description:
        !            54: *  =================
        !            55: *>
        !            56: *> \verbatim
        !            57: *>
        !            58: *> The following steps are performed:
        !            59: *>
        !            60: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
        !            61: *>    the system:
        !            62: *>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
        !            63: *>    Whether or not the system will be equilibrated depends on the
        !            64: *>    scaling of the matrix A, but if equilibration is used, A is
        !            65: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
        !            66: *>
        !            67: *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
        !            68: *>    factor the matrix A (after equilibration if FACT = 'E') as
        !            69: *>       A = U**T * U,  if UPLO = 'U', or
        !            70: *>       A = L * L**T,  if UPLO = 'L',
        !            71: *>    where U is an upper triangular band matrix, and L is a lower
        !            72: *>    triangular band matrix.
        !            73: *>
        !            74: *> 3. If the leading i-by-i principal minor is not positive definite,
        !            75: *>    then the routine returns with INFO = i. Otherwise, the factored
        !            76: *>    form of A is used to estimate the condition number of the matrix
        !            77: *>    A.  If the reciprocal of the condition number is less than machine
        !            78: *>    precision, INFO = N+1 is returned as a warning, but the routine
        !            79: *>    still goes on to solve for X and compute error bounds as
        !            80: *>    described below.
        !            81: *>
        !            82: *> 4. The system of equations is solved for X using the factored form
        !            83: *>    of A.
        !            84: *>
        !            85: *> 5. Iterative refinement is applied to improve the computed solution
        !            86: *>    matrix and calculate error bounds and backward error estimates
        !            87: *>    for it.
        !            88: *>
        !            89: *> 6. If equilibration was used, the matrix X is premultiplied by
        !            90: *>    diag(S) so that it solves the original system before
        !            91: *>    equilibration.
        !            92: *> \endverbatim
        !            93: *
        !            94: *  Arguments:
        !            95: *  ==========
        !            96: *
        !            97: *> \param[in] FACT
        !            98: *> \verbatim
        !            99: *>          FACT is CHARACTER*1
        !           100: *>          Specifies whether or not the factored form of the matrix A is
        !           101: *>          supplied on entry, and if not, whether the matrix A should be
        !           102: *>          equilibrated before it is factored.
        !           103: *>          = 'F':  On entry, AFB contains the factored form of A.
        !           104: *>                  If EQUED = 'Y', the matrix A has been equilibrated
        !           105: *>                  with scaling factors given by S.  AB and AFB will not
        !           106: *>                  be modified.
        !           107: *>          = 'N':  The matrix A will be copied to AFB and factored.
        !           108: *>          = 'E':  The matrix A will be equilibrated if necessary, then
        !           109: *>                  copied to AFB and factored.
        !           110: *> \endverbatim
        !           111: *>
        !           112: *> \param[in] UPLO
        !           113: *> \verbatim
        !           114: *>          UPLO is CHARACTER*1
        !           115: *>          = 'U':  Upper triangle of A is stored;
        !           116: *>          = 'L':  Lower triangle of A is stored.
        !           117: *> \endverbatim
        !           118: *>
        !           119: *> \param[in] N
        !           120: *> \verbatim
        !           121: *>          N is INTEGER
        !           122: *>          The number of linear equations, i.e., the order of the
        !           123: *>          matrix A.  N >= 0.
        !           124: *> \endverbatim
        !           125: *>
        !           126: *> \param[in] KD
        !           127: *> \verbatim
        !           128: *>          KD is INTEGER
        !           129: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
        !           130: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
        !           131: *> \endverbatim
        !           132: *>
        !           133: *> \param[in] NRHS
        !           134: *> \verbatim
        !           135: *>          NRHS is INTEGER
        !           136: *>          The number of right-hand sides, i.e., the number of columns
        !           137: *>          of the matrices B and X.  NRHS >= 0.
        !           138: *> \endverbatim
        !           139: *>
        !           140: *> \param[in,out] AB
        !           141: *> \verbatim
        !           142: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
        !           143: *>          On entry, the upper or lower triangle of the symmetric band
        !           144: *>          matrix A, stored in the first KD+1 rows of the array, except
        !           145: *>          if FACT = 'F' and EQUED = 'Y', then A must contain the
        !           146: *>          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A
        !           147: *>          is stored in the j-th column of the array AB as follows:
        !           148: *>          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
        !           149: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
        !           150: *>          See below for further details.
        !           151: *>
        !           152: *>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
        !           153: *>          diag(S)*A*diag(S).
        !           154: *> \endverbatim
        !           155: *>
        !           156: *> \param[in] LDAB
        !           157: *> \verbatim
        !           158: *>          LDAB is INTEGER
        !           159: *>          The leading dimension of the array A.  LDAB >= KD+1.
        !           160: *> \endverbatim
        !           161: *>
        !           162: *> \param[in,out] AFB
        !           163: *> \verbatim
        !           164: *>          AFB is or output) DOUBLE PRECISION array, dimension (LDAFB,N)
        !           165: *>          If FACT = 'F', then AFB is an input argument and on entry
        !           166: *>          contains the triangular factor U or L from the Cholesky
        !           167: *>          factorization A = U**T*U or A = L*L**T of the band matrix
        !           168: *>          A, in the same storage format as A (see AB).  If EQUED = 'Y',
        !           169: *>          then AFB is the factored form of the equilibrated matrix A.
        !           170: *>
        !           171: *>          If FACT = 'N', then AFB is an output argument and on exit
        !           172: *>          returns the triangular factor U or L from the Cholesky
        !           173: *>          factorization A = U**T*U or A = L*L**T.
        !           174: *>
        !           175: *>          If FACT = 'E', then AFB is an output argument and on exit
        !           176: *>          returns the triangular factor U or L from the Cholesky
        !           177: *>          factorization A = U**T*U or A = L*L**T of the equilibrated
        !           178: *>          matrix A (see the description of A for the form of the
        !           179: *>          equilibrated matrix).
        !           180: *> \endverbatim
        !           181: *>
        !           182: *> \param[in] LDAFB
        !           183: *> \verbatim
        !           184: *>          LDAFB is INTEGER
        !           185: *>          The leading dimension of the array AFB.  LDAFB >= KD+1.
        !           186: *> \endverbatim
        !           187: *>
        !           188: *> \param[in,out] EQUED
        !           189: *> \verbatim
        !           190: *>          EQUED is or output) CHARACTER*1
        !           191: *>          Specifies the form of equilibration that was done.
        !           192: *>          = 'N':  No equilibration (always true if FACT = 'N').
        !           193: *>          = 'Y':  Equilibration was done, i.e., A has been replaced by
        !           194: *>                  diag(S) * A * diag(S).
        !           195: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
        !           196: *>          output argument.
        !           197: *> \endverbatim
        !           198: *>
        !           199: *> \param[in,out] S
        !           200: *> \verbatim
        !           201: *>          S is or output) DOUBLE PRECISION array, dimension (N)
        !           202: *>          The scale factors for A; not accessed if EQUED = 'N'.  S is
        !           203: *>          an input argument if FACT = 'F'; otherwise, S is an output
        !           204: *>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
        !           205: *>          must be positive.
        !           206: *> \endverbatim
        !           207: *>
        !           208: *> \param[in,out] B
        !           209: *> \verbatim
        !           210: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           211: *>          On entry, the N-by-NRHS right hand side matrix B.
        !           212: *>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
        !           213: *>          B is overwritten by diag(S) * B.
        !           214: *> \endverbatim
        !           215: *>
        !           216: *> \param[in] LDB
        !           217: *> \verbatim
        !           218: *>          LDB is INTEGER
        !           219: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           220: *> \endverbatim
        !           221: *>
        !           222: *> \param[out] X
        !           223: *> \verbatim
        !           224: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
        !           225: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
        !           226: *>          the original system of equations.  Note that if EQUED = 'Y',
        !           227: *>          A and B are modified on exit, and the solution to the
        !           228: *>          equilibrated system is inv(diag(S))*X.
        !           229: *> \endverbatim
        !           230: *>
        !           231: *> \param[in] LDX
        !           232: *> \verbatim
        !           233: *>          LDX is INTEGER
        !           234: *>          The leading dimension of the array X.  LDX >= max(1,N).
        !           235: *> \endverbatim
        !           236: *>
        !           237: *> \param[out] RCOND
        !           238: *> \verbatim
        !           239: *>          RCOND is DOUBLE PRECISION
        !           240: *>          The estimate of the reciprocal condition number of the matrix
        !           241: *>          A after equilibration (if done).  If RCOND is less than the
        !           242: *>          machine precision (in particular, if RCOND = 0), the matrix
        !           243: *>          is singular to working precision.  This condition is
        !           244: *>          indicated by a return code of INFO > 0.
        !           245: *> \endverbatim
        !           246: *>
        !           247: *> \param[out] FERR
        !           248: *> \verbatim
        !           249: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
        !           250: *>          The estimated forward error bound for each solution vector
        !           251: *>          X(j) (the j-th column of the solution matrix X).
        !           252: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           253: *>          is an estimated upper bound for the magnitude of the largest
        !           254: *>          element in (X(j) - XTRUE) divided by the magnitude of the
        !           255: *>          largest element in X(j).  The estimate is as reliable as
        !           256: *>          the estimate for RCOND, and is almost always a slight
        !           257: *>          overestimate of the true error.
        !           258: *> \endverbatim
        !           259: *>
        !           260: *> \param[out] BERR
        !           261: *> \verbatim
        !           262: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
        !           263: *>          The componentwise relative backward error of each solution
        !           264: *>          vector X(j) (i.e., the smallest relative change in
        !           265: *>          any element of A or B that makes X(j) an exact solution).
        !           266: *> \endverbatim
        !           267: *>
        !           268: *> \param[out] WORK
        !           269: *> \verbatim
        !           270: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
        !           271: *> \endverbatim
        !           272: *>
        !           273: *> \param[out] IWORK
        !           274: *> \verbatim
        !           275: *>          IWORK is INTEGER array, dimension (N)
        !           276: *> \endverbatim
        !           277: *>
        !           278: *> \param[out] INFO
        !           279: *> \verbatim
        !           280: *>          INFO is INTEGER
        !           281: *>          = 0:  successful exit
        !           282: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           283: *>          > 0:  if INFO = i, and i is
        !           284: *>                <= N:  the leading minor of order i of A is
        !           285: *>                       not positive definite, so the factorization
        !           286: *>                       could not be completed, and the solution has not
        !           287: *>                       been computed. RCOND = 0 is returned.
        !           288: *>                = N+1: U is nonsingular, but RCOND is less than machine
        !           289: *>                       precision, meaning that the matrix is singular
        !           290: *>                       to working precision.  Nevertheless, the
        !           291: *>                       solution and error bounds are computed because
        !           292: *>                       there are a number of situations where the
        !           293: *>                       computed solution can be more accurate than the
        !           294: *>                       value of RCOND would suggest.
        !           295: *> \endverbatim
        !           296: *
        !           297: *  Authors:
        !           298: *  ========
        !           299: *
        !           300: *> \author Univ. of Tennessee 
        !           301: *> \author Univ. of California Berkeley 
        !           302: *> \author Univ. of Colorado Denver 
        !           303: *> \author NAG Ltd. 
        !           304: *
        !           305: *> \date November 2011
        !           306: *
        !           307: *> \ingroup doubleOTHERsolve
        !           308: *
        !           309: *> \par Further Details:
        !           310: *  =====================
        !           311: *>
        !           312: *> \verbatim
        !           313: *>
        !           314: *>  The band storage scheme is illustrated by the following example, when
        !           315: *>  N = 6, KD = 2, and UPLO = 'U':
        !           316: *>
        !           317: *>  Two-dimensional storage of the symmetric matrix A:
        !           318: *>
        !           319: *>     a11  a12  a13
        !           320: *>          a22  a23  a24
        !           321: *>               a33  a34  a35
        !           322: *>                    a44  a45  a46
        !           323: *>                         a55  a56
        !           324: *>     (aij=conjg(aji))         a66
        !           325: *>
        !           326: *>  Band storage of the upper triangle of A:
        !           327: *>
        !           328: *>      *    *   a13  a24  a35  a46
        !           329: *>      *   a12  a23  a34  a45  a56
        !           330: *>     a11  a22  a33  a44  a55  a66
        !           331: *>
        !           332: *>  Similarly, if UPLO = 'L' the format of A is as follows:
        !           333: *>
        !           334: *>     a11  a22  a33  a44  a55  a66
        !           335: *>     a21  a32  a43  a54  a65   *
        !           336: *>     a31  a42  a53  a64   *    *
        !           337: *>
        !           338: *>  Array elements marked * are not used by the routine.
        !           339: *> \endverbatim
        !           340: *>
        !           341: *  =====================================================================
1.1       bertrand  342:       SUBROUTINE DPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
                    343:      $                   EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
                    344:      $                   WORK, IWORK, INFO )
                    345: *
1.9     ! bertrand  346: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  347: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    348: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  349: *     November 2011
1.1       bertrand  350: *
                    351: *     .. Scalar Arguments ..
                    352:       CHARACTER          EQUED, FACT, UPLO
                    353:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
                    354:       DOUBLE PRECISION   RCOND
                    355: *     ..
                    356: *     .. Array Arguments ..
                    357:       INTEGER            IWORK( * )
                    358:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    359:      $                   BERR( * ), FERR( * ), S( * ), WORK( * ),
                    360:      $                   X( LDX, * )
                    361: *     ..
                    362: *
                    363: *  =====================================================================
                    364: *
                    365: *     .. Parameters ..
                    366:       DOUBLE PRECISION   ZERO, ONE
                    367:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    368: *     ..
                    369: *     .. Local Scalars ..
                    370:       LOGICAL            EQUIL, NOFACT, RCEQU, UPPER
                    371:       INTEGER            I, INFEQU, J, J1, J2
                    372:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
                    373: *     ..
                    374: *     .. External Functions ..
                    375:       LOGICAL            LSAME
                    376:       DOUBLE PRECISION   DLAMCH, DLANSB
                    377:       EXTERNAL           LSAME, DLAMCH, DLANSB
                    378: *     ..
                    379: *     .. External Subroutines ..
                    380:       EXTERNAL           DCOPY, DLACPY, DLAQSB, DPBCON, DPBEQU, DPBRFS,
                    381:      $                   DPBTRF, DPBTRS, XERBLA
                    382: *     ..
                    383: *     .. Intrinsic Functions ..
                    384:       INTRINSIC          MAX, MIN
                    385: *     ..
                    386: *     .. Executable Statements ..
                    387: *
                    388:       INFO = 0
                    389:       NOFACT = LSAME( FACT, 'N' )
                    390:       EQUIL = LSAME( FACT, 'E' )
                    391:       UPPER = LSAME( UPLO, 'U' )
                    392:       IF( NOFACT .OR. EQUIL ) THEN
                    393:          EQUED = 'N'
                    394:          RCEQU = .FALSE.
                    395:       ELSE
                    396:          RCEQU = LSAME( EQUED, 'Y' )
                    397:          SMLNUM = DLAMCH( 'Safe minimum' )
                    398:          BIGNUM = ONE / SMLNUM
                    399:       END IF
                    400: *
                    401: *     Test the input parameters.
                    402: *
                    403:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    404:      $     THEN
                    405:          INFO = -1
                    406:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    407:          INFO = -2
                    408:       ELSE IF( N.LT.0 ) THEN
                    409:          INFO = -3
                    410:       ELSE IF( KD.LT.0 ) THEN
                    411:          INFO = -4
                    412:       ELSE IF( NRHS.LT.0 ) THEN
                    413:          INFO = -5
                    414:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    415:          INFO = -7
                    416:       ELSE IF( LDAFB.LT.KD+1 ) THEN
                    417:          INFO = -9
                    418:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    419:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    420:          INFO = -10
                    421:       ELSE
                    422:          IF( RCEQU ) THEN
                    423:             SMIN = BIGNUM
                    424:             SMAX = ZERO
                    425:             DO 10 J = 1, N
                    426:                SMIN = MIN( SMIN, S( J ) )
                    427:                SMAX = MAX( SMAX, S( J ) )
                    428:    10       CONTINUE
                    429:             IF( SMIN.LE.ZERO ) THEN
                    430:                INFO = -11
                    431:             ELSE IF( N.GT.0 ) THEN
                    432:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
                    433:             ELSE
                    434:                SCOND = ONE
                    435:             END IF
                    436:          END IF
                    437:          IF( INFO.EQ.0 ) THEN
                    438:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    439:                INFO = -13
                    440:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    441:                INFO = -15
                    442:             END IF
                    443:          END IF
                    444:       END IF
                    445: *
                    446:       IF( INFO.NE.0 ) THEN
                    447:          CALL XERBLA( 'DPBSVX', -INFO )
                    448:          RETURN
                    449:       END IF
                    450: *
                    451:       IF( EQUIL ) THEN
                    452: *
                    453: *        Compute row and column scalings to equilibrate the matrix A.
                    454: *
                    455:          CALL DPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFEQU )
                    456:          IF( INFEQU.EQ.0 ) THEN
                    457: *
                    458: *           Equilibrate the matrix.
                    459: *
                    460:             CALL DLAQSB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
                    461:             RCEQU = LSAME( EQUED, 'Y' )
                    462:          END IF
                    463:       END IF
                    464: *
                    465: *     Scale the right-hand side.
                    466: *
                    467:       IF( RCEQU ) THEN
                    468:          DO 30 J = 1, NRHS
                    469:             DO 20 I = 1, N
                    470:                B( I, J ) = S( I )*B( I, J )
                    471:    20       CONTINUE
                    472:    30    CONTINUE
                    473:       END IF
                    474: *
                    475:       IF( NOFACT .OR. EQUIL ) THEN
                    476: *
1.8       bertrand  477: *        Compute the Cholesky factorization A = U**T *U or A = L*L**T.
1.1       bertrand  478: *
                    479:          IF( UPPER ) THEN
                    480:             DO 40 J = 1, N
                    481:                J1 = MAX( J-KD, 1 )
                    482:                CALL DCOPY( J-J1+1, AB( KD+1-J+J1, J ), 1,
                    483:      $                     AFB( KD+1-J+J1, J ), 1 )
                    484:    40       CONTINUE
                    485:          ELSE
                    486:             DO 50 J = 1, N
                    487:                J2 = MIN( J+KD, N )
                    488:                CALL DCOPY( J2-J+1, AB( 1, J ), 1, AFB( 1, J ), 1 )
                    489:    50       CONTINUE
                    490:          END IF
                    491: *
                    492:          CALL DPBTRF( UPLO, N, KD, AFB, LDAFB, INFO )
                    493: *
                    494: *        Return if INFO is non-zero.
                    495: *
                    496:          IF( INFO.GT.0 )THEN
                    497:             RCOND = ZERO
                    498:             RETURN
                    499:          END IF
                    500:       END IF
                    501: *
                    502: *     Compute the norm of the matrix A.
                    503: *
                    504:       ANORM = DLANSB( '1', UPLO, N, KD, AB, LDAB, WORK )
                    505: *
                    506: *     Compute the reciprocal of the condition number of A.
                    507: *
                    508:       CALL DPBCON( UPLO, N, KD, AFB, LDAFB, ANORM, RCOND, WORK, IWORK,
                    509:      $             INFO )
                    510: *
                    511: *     Compute the solution matrix X.
                    512: *
                    513:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    514:       CALL DPBTRS( UPLO, N, KD, NRHS, AFB, LDAFB, X, LDX, INFO )
                    515: *
                    516: *     Use iterative refinement to improve the computed solution and
                    517: *     compute error bounds and backward error estimates for it.
                    518: *
                    519:       CALL DPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X,
                    520:      $             LDX, FERR, BERR, WORK, IWORK, INFO )
                    521: *
                    522: *     Transform the solution matrix X to a solution of the original
                    523: *     system.
                    524: *
                    525:       IF( RCEQU ) THEN
                    526:          DO 70 J = 1, NRHS
                    527:             DO 60 I = 1, N
                    528:                X( I, J ) = S( I )*X( I, J )
                    529:    60       CONTINUE
                    530:    70    CONTINUE
                    531:          DO 80 J = 1, NRHS
                    532:             FERR( J ) = FERR( J ) / SCOND
                    533:    80    CONTINUE
                    534:       END IF
                    535: *
                    536: *     Set INFO = N+1 if the matrix is singular to working precision.
                    537: *
                    538:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    539:      $   INFO = N + 1
                    540: *
                    541:       RETURN
                    542: *
                    543: *     End of DPBSVX
                    544: *
                    545:       END

CVSweb interface <joel.bertrand@systella.fr>