Annotation of rpl/lapack/lapack/dpbsvx.f, revision 1.19

1.9       bertrand    1: *> \brief <b> DPBSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DPBSVX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpbsvx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpbsvx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpbsvx.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
                     22: *                          EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
                     23: *                          WORK, IWORK, INFO )
1.16      bertrand   24: *
1.9       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          EQUED, FACT, UPLO
                     27: *       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
                     28: *       DOUBLE PRECISION   RCOND
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IWORK( * )
                     32: *       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                     33: *      $                   BERR( * ), FERR( * ), S( * ), WORK( * ),
                     34: *      $                   X( LDX, * )
                     35: *       ..
1.16      bertrand   36: *
1.9       bertrand   37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> DPBSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
                     44: *> compute the solution to a real system of linear equations
                     45: *>    A * X = B,
                     46: *> where A is an N-by-N symmetric positive definite band matrix and X
                     47: *> and B are N-by-NRHS matrices.
                     48: *>
                     49: *> Error bounds on the solution and a condition estimate are also
                     50: *> provided.
                     51: *> \endverbatim
                     52: *
                     53: *> \par Description:
                     54: *  =================
                     55: *>
                     56: *> \verbatim
                     57: *>
                     58: *> The following steps are performed:
                     59: *>
                     60: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
                     61: *>    the system:
                     62: *>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
                     63: *>    Whether or not the system will be equilibrated depends on the
                     64: *>    scaling of the matrix A, but if equilibration is used, A is
                     65: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
                     66: *>
                     67: *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
                     68: *>    factor the matrix A (after equilibration if FACT = 'E') as
                     69: *>       A = U**T * U,  if UPLO = 'U', or
                     70: *>       A = L * L**T,  if UPLO = 'L',
                     71: *>    where U is an upper triangular band matrix, and L is a lower
                     72: *>    triangular band matrix.
                     73: *>
                     74: *> 3. If the leading i-by-i principal minor is not positive definite,
                     75: *>    then the routine returns with INFO = i. Otherwise, the factored
                     76: *>    form of A is used to estimate the condition number of the matrix
                     77: *>    A.  If the reciprocal of the condition number is less than machine
                     78: *>    precision, INFO = N+1 is returned as a warning, but the routine
                     79: *>    still goes on to solve for X and compute error bounds as
                     80: *>    described below.
                     81: *>
                     82: *> 4. The system of equations is solved for X using the factored form
                     83: *>    of A.
                     84: *>
                     85: *> 5. Iterative refinement is applied to improve the computed solution
                     86: *>    matrix and calculate error bounds and backward error estimates
                     87: *>    for it.
                     88: *>
                     89: *> 6. If equilibration was used, the matrix X is premultiplied by
                     90: *>    diag(S) so that it solves the original system before
                     91: *>    equilibration.
                     92: *> \endverbatim
                     93: *
                     94: *  Arguments:
                     95: *  ==========
                     96: *
                     97: *> \param[in] FACT
                     98: *> \verbatim
                     99: *>          FACT is CHARACTER*1
                    100: *>          Specifies whether or not the factored form of the matrix A is
                    101: *>          supplied on entry, and if not, whether the matrix A should be
                    102: *>          equilibrated before it is factored.
                    103: *>          = 'F':  On entry, AFB contains the factored form of A.
                    104: *>                  If EQUED = 'Y', the matrix A has been equilibrated
                    105: *>                  with scaling factors given by S.  AB and AFB will not
                    106: *>                  be modified.
                    107: *>          = 'N':  The matrix A will be copied to AFB and factored.
                    108: *>          = 'E':  The matrix A will be equilibrated if necessary, then
                    109: *>                  copied to AFB and factored.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] UPLO
                    113: *> \verbatim
                    114: *>          UPLO is CHARACTER*1
                    115: *>          = 'U':  Upper triangle of A is stored;
                    116: *>          = 'L':  Lower triangle of A is stored.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[in] N
                    120: *> \verbatim
                    121: *>          N is INTEGER
                    122: *>          The number of linear equations, i.e., the order of the
                    123: *>          matrix A.  N >= 0.
                    124: *> \endverbatim
                    125: *>
                    126: *> \param[in] KD
                    127: *> \verbatim
                    128: *>          KD is INTEGER
                    129: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                    130: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[in] NRHS
                    134: *> \verbatim
                    135: *>          NRHS is INTEGER
                    136: *>          The number of right-hand sides, i.e., the number of columns
                    137: *>          of the matrices B and X.  NRHS >= 0.
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[in,out] AB
                    141: *> \verbatim
                    142: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
                    143: *>          On entry, the upper or lower triangle of the symmetric band
                    144: *>          matrix A, stored in the first KD+1 rows of the array, except
                    145: *>          if FACT = 'F' and EQUED = 'Y', then A must contain the
                    146: *>          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A
                    147: *>          is stored in the j-th column of the array AB as follows:
                    148: *>          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
                    149: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
                    150: *>          See below for further details.
                    151: *>
                    152: *>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
                    153: *>          diag(S)*A*diag(S).
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[in] LDAB
                    157: *> \verbatim
                    158: *>          LDAB is INTEGER
                    159: *>          The leading dimension of the array A.  LDAB >= KD+1.
                    160: *> \endverbatim
                    161: *>
                    162: *> \param[in,out] AFB
                    163: *> \verbatim
1.11      bertrand  164: *>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
1.9       bertrand  165: *>          If FACT = 'F', then AFB is an input argument and on entry
                    166: *>          contains the triangular factor U or L from the Cholesky
                    167: *>          factorization A = U**T*U or A = L*L**T of the band matrix
                    168: *>          A, in the same storage format as A (see AB).  If EQUED = 'Y',
                    169: *>          then AFB is the factored form of the equilibrated matrix A.
                    170: *>
                    171: *>          If FACT = 'N', then AFB is an output argument and on exit
                    172: *>          returns the triangular factor U or L from the Cholesky
                    173: *>          factorization A = U**T*U or A = L*L**T.
                    174: *>
                    175: *>          If FACT = 'E', then AFB is an output argument and on exit
                    176: *>          returns the triangular factor U or L from the Cholesky
                    177: *>          factorization A = U**T*U or A = L*L**T of the equilibrated
                    178: *>          matrix A (see the description of A for the form of the
                    179: *>          equilibrated matrix).
                    180: *> \endverbatim
                    181: *>
                    182: *> \param[in] LDAFB
                    183: *> \verbatim
                    184: *>          LDAFB is INTEGER
                    185: *>          The leading dimension of the array AFB.  LDAFB >= KD+1.
                    186: *> \endverbatim
                    187: *>
                    188: *> \param[in,out] EQUED
                    189: *> \verbatim
1.11      bertrand  190: *>          EQUED is CHARACTER*1
1.9       bertrand  191: *>          Specifies the form of equilibration that was done.
                    192: *>          = 'N':  No equilibration (always true if FACT = 'N').
                    193: *>          = 'Y':  Equilibration was done, i.e., A has been replaced by
                    194: *>                  diag(S) * A * diag(S).
                    195: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
                    196: *>          output argument.
                    197: *> \endverbatim
                    198: *>
                    199: *> \param[in,out] S
                    200: *> \verbatim
1.11      bertrand  201: *>          S is DOUBLE PRECISION array, dimension (N)
1.9       bertrand  202: *>          The scale factors for A; not accessed if EQUED = 'N'.  S is
                    203: *>          an input argument if FACT = 'F'; otherwise, S is an output
                    204: *>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
                    205: *>          must be positive.
                    206: *> \endverbatim
                    207: *>
                    208: *> \param[in,out] B
                    209: *> \verbatim
                    210: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    211: *>          On entry, the N-by-NRHS right hand side matrix B.
                    212: *>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
                    213: *>          B is overwritten by diag(S) * B.
                    214: *> \endverbatim
                    215: *>
                    216: *> \param[in] LDB
                    217: *> \verbatim
                    218: *>          LDB is INTEGER
                    219: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    220: *> \endverbatim
                    221: *>
                    222: *> \param[out] X
                    223: *> \verbatim
                    224: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    225: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
                    226: *>          the original system of equations.  Note that if EQUED = 'Y',
                    227: *>          A and B are modified on exit, and the solution to the
                    228: *>          equilibrated system is inv(diag(S))*X.
                    229: *> \endverbatim
                    230: *>
                    231: *> \param[in] LDX
                    232: *> \verbatim
                    233: *>          LDX is INTEGER
                    234: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    235: *> \endverbatim
                    236: *>
                    237: *> \param[out] RCOND
                    238: *> \verbatim
                    239: *>          RCOND is DOUBLE PRECISION
                    240: *>          The estimate of the reciprocal condition number of the matrix
                    241: *>          A after equilibration (if done).  If RCOND is less than the
                    242: *>          machine precision (in particular, if RCOND = 0), the matrix
                    243: *>          is singular to working precision.  This condition is
                    244: *>          indicated by a return code of INFO > 0.
                    245: *> \endverbatim
                    246: *>
                    247: *> \param[out] FERR
                    248: *> \verbatim
                    249: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    250: *>          The estimated forward error bound for each solution vector
                    251: *>          X(j) (the j-th column of the solution matrix X).
                    252: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    253: *>          is an estimated upper bound for the magnitude of the largest
                    254: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    255: *>          largest element in X(j).  The estimate is as reliable as
                    256: *>          the estimate for RCOND, and is almost always a slight
                    257: *>          overestimate of the true error.
                    258: *> \endverbatim
                    259: *>
                    260: *> \param[out] BERR
                    261: *> \verbatim
                    262: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    263: *>          The componentwise relative backward error of each solution
                    264: *>          vector X(j) (i.e., the smallest relative change in
                    265: *>          any element of A or B that makes X(j) an exact solution).
                    266: *> \endverbatim
                    267: *>
                    268: *> \param[out] WORK
                    269: *> \verbatim
                    270: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
                    271: *> \endverbatim
                    272: *>
                    273: *> \param[out] IWORK
                    274: *> \verbatim
                    275: *>          IWORK is INTEGER array, dimension (N)
                    276: *> \endverbatim
                    277: *>
                    278: *> \param[out] INFO
                    279: *> \verbatim
                    280: *>          INFO is INTEGER
                    281: *>          = 0:  successful exit
                    282: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    283: *>          > 0:  if INFO = i, and i is
                    284: *>                <= N:  the leading minor of order i of A is
                    285: *>                       not positive definite, so the factorization
                    286: *>                       could not be completed, and the solution has not
                    287: *>                       been computed. RCOND = 0 is returned.
                    288: *>                = N+1: U is nonsingular, but RCOND is less than machine
                    289: *>                       precision, meaning that the matrix is singular
                    290: *>                       to working precision.  Nevertheless, the
                    291: *>                       solution and error bounds are computed because
                    292: *>                       there are a number of situations where the
                    293: *>                       computed solution can be more accurate than the
                    294: *>                       value of RCOND would suggest.
                    295: *> \endverbatim
                    296: *
                    297: *  Authors:
                    298: *  ========
                    299: *
1.16      bertrand  300: *> \author Univ. of Tennessee
                    301: *> \author Univ. of California Berkeley
                    302: *> \author Univ. of Colorado Denver
                    303: *> \author NAG Ltd.
1.9       bertrand  304: *
                    305: *> \ingroup doubleOTHERsolve
                    306: *
                    307: *> \par Further Details:
                    308: *  =====================
                    309: *>
                    310: *> \verbatim
                    311: *>
                    312: *>  The band storage scheme is illustrated by the following example, when
                    313: *>  N = 6, KD = 2, and UPLO = 'U':
                    314: *>
                    315: *>  Two-dimensional storage of the symmetric matrix A:
                    316: *>
                    317: *>     a11  a12  a13
                    318: *>          a22  a23  a24
                    319: *>               a33  a34  a35
                    320: *>                    a44  a45  a46
                    321: *>                         a55  a56
                    322: *>     (aij=conjg(aji))         a66
                    323: *>
                    324: *>  Band storage of the upper triangle of A:
                    325: *>
                    326: *>      *    *   a13  a24  a35  a46
                    327: *>      *   a12  a23  a34  a45  a56
                    328: *>     a11  a22  a33  a44  a55  a66
                    329: *>
                    330: *>  Similarly, if UPLO = 'L' the format of A is as follows:
                    331: *>
                    332: *>     a11  a22  a33  a44  a55  a66
                    333: *>     a21  a32  a43  a54  a65   *
                    334: *>     a31  a42  a53  a64   *    *
                    335: *>
                    336: *>  Array elements marked * are not used by the routine.
                    337: *> \endverbatim
                    338: *>
                    339: *  =====================================================================
1.1       bertrand  340:       SUBROUTINE DPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
                    341:      $                   EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
                    342:      $                   WORK, IWORK, INFO )
                    343: *
1.19    ! bertrand  344: *  -- LAPACK driver routine --
1.1       bertrand  345: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    346: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    347: *
                    348: *     .. Scalar Arguments ..
                    349:       CHARACTER          EQUED, FACT, UPLO
                    350:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
                    351:       DOUBLE PRECISION   RCOND
                    352: *     ..
                    353: *     .. Array Arguments ..
                    354:       INTEGER            IWORK( * )
                    355:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    356:      $                   BERR( * ), FERR( * ), S( * ), WORK( * ),
                    357:      $                   X( LDX, * )
                    358: *     ..
                    359: *
                    360: *  =====================================================================
                    361: *
                    362: *     .. Parameters ..
                    363:       DOUBLE PRECISION   ZERO, ONE
                    364:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    365: *     ..
                    366: *     .. Local Scalars ..
                    367:       LOGICAL            EQUIL, NOFACT, RCEQU, UPPER
                    368:       INTEGER            I, INFEQU, J, J1, J2
                    369:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
                    370: *     ..
                    371: *     .. External Functions ..
                    372:       LOGICAL            LSAME
                    373:       DOUBLE PRECISION   DLAMCH, DLANSB
                    374:       EXTERNAL           LSAME, DLAMCH, DLANSB
                    375: *     ..
                    376: *     .. External Subroutines ..
                    377:       EXTERNAL           DCOPY, DLACPY, DLAQSB, DPBCON, DPBEQU, DPBRFS,
                    378:      $                   DPBTRF, DPBTRS, XERBLA
                    379: *     ..
                    380: *     .. Intrinsic Functions ..
                    381:       INTRINSIC          MAX, MIN
                    382: *     ..
                    383: *     .. Executable Statements ..
                    384: *
                    385:       INFO = 0
                    386:       NOFACT = LSAME( FACT, 'N' )
                    387:       EQUIL = LSAME( FACT, 'E' )
                    388:       UPPER = LSAME( UPLO, 'U' )
                    389:       IF( NOFACT .OR. EQUIL ) THEN
                    390:          EQUED = 'N'
                    391:          RCEQU = .FALSE.
                    392:       ELSE
                    393:          RCEQU = LSAME( EQUED, 'Y' )
                    394:          SMLNUM = DLAMCH( 'Safe minimum' )
                    395:          BIGNUM = ONE / SMLNUM
                    396:       END IF
                    397: *
                    398: *     Test the input parameters.
                    399: *
                    400:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    401:      $     THEN
                    402:          INFO = -1
                    403:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    404:          INFO = -2
                    405:       ELSE IF( N.LT.0 ) THEN
                    406:          INFO = -3
                    407:       ELSE IF( KD.LT.0 ) THEN
                    408:          INFO = -4
                    409:       ELSE IF( NRHS.LT.0 ) THEN
                    410:          INFO = -5
                    411:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    412:          INFO = -7
                    413:       ELSE IF( LDAFB.LT.KD+1 ) THEN
                    414:          INFO = -9
                    415:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    416:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    417:          INFO = -10
                    418:       ELSE
                    419:          IF( RCEQU ) THEN
                    420:             SMIN = BIGNUM
                    421:             SMAX = ZERO
                    422:             DO 10 J = 1, N
                    423:                SMIN = MIN( SMIN, S( J ) )
                    424:                SMAX = MAX( SMAX, S( J ) )
                    425:    10       CONTINUE
                    426:             IF( SMIN.LE.ZERO ) THEN
                    427:                INFO = -11
                    428:             ELSE IF( N.GT.0 ) THEN
                    429:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
                    430:             ELSE
                    431:                SCOND = ONE
                    432:             END IF
                    433:          END IF
                    434:          IF( INFO.EQ.0 ) THEN
                    435:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    436:                INFO = -13
                    437:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    438:                INFO = -15
                    439:             END IF
                    440:          END IF
                    441:       END IF
                    442: *
                    443:       IF( INFO.NE.0 ) THEN
                    444:          CALL XERBLA( 'DPBSVX', -INFO )
                    445:          RETURN
                    446:       END IF
                    447: *
                    448:       IF( EQUIL ) THEN
                    449: *
                    450: *        Compute row and column scalings to equilibrate the matrix A.
                    451: *
                    452:          CALL DPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFEQU )
                    453:          IF( INFEQU.EQ.0 ) THEN
                    454: *
                    455: *           Equilibrate the matrix.
                    456: *
                    457:             CALL DLAQSB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
                    458:             RCEQU = LSAME( EQUED, 'Y' )
                    459:          END IF
                    460:       END IF
                    461: *
                    462: *     Scale the right-hand side.
                    463: *
                    464:       IF( RCEQU ) THEN
                    465:          DO 30 J = 1, NRHS
                    466:             DO 20 I = 1, N
                    467:                B( I, J ) = S( I )*B( I, J )
                    468:    20       CONTINUE
                    469:    30    CONTINUE
                    470:       END IF
                    471: *
                    472:       IF( NOFACT .OR. EQUIL ) THEN
                    473: *
1.8       bertrand  474: *        Compute the Cholesky factorization A = U**T *U or A = L*L**T.
1.1       bertrand  475: *
                    476:          IF( UPPER ) THEN
                    477:             DO 40 J = 1, N
                    478:                J1 = MAX( J-KD, 1 )
                    479:                CALL DCOPY( J-J1+1, AB( KD+1-J+J1, J ), 1,
                    480:      $                     AFB( KD+1-J+J1, J ), 1 )
                    481:    40       CONTINUE
                    482:          ELSE
                    483:             DO 50 J = 1, N
                    484:                J2 = MIN( J+KD, N )
                    485:                CALL DCOPY( J2-J+1, AB( 1, J ), 1, AFB( 1, J ), 1 )
                    486:    50       CONTINUE
                    487:          END IF
                    488: *
                    489:          CALL DPBTRF( UPLO, N, KD, AFB, LDAFB, INFO )
                    490: *
                    491: *        Return if INFO is non-zero.
                    492: *
                    493:          IF( INFO.GT.0 )THEN
                    494:             RCOND = ZERO
                    495:             RETURN
                    496:          END IF
                    497:       END IF
                    498: *
                    499: *     Compute the norm of the matrix A.
                    500: *
                    501:       ANORM = DLANSB( '1', UPLO, N, KD, AB, LDAB, WORK )
                    502: *
                    503: *     Compute the reciprocal of the condition number of A.
                    504: *
                    505:       CALL DPBCON( UPLO, N, KD, AFB, LDAFB, ANORM, RCOND, WORK, IWORK,
                    506:      $             INFO )
                    507: *
                    508: *     Compute the solution matrix X.
                    509: *
                    510:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    511:       CALL DPBTRS( UPLO, N, KD, NRHS, AFB, LDAFB, X, LDX, INFO )
                    512: *
                    513: *     Use iterative refinement to improve the computed solution and
                    514: *     compute error bounds and backward error estimates for it.
                    515: *
                    516:       CALL DPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X,
                    517:      $             LDX, FERR, BERR, WORK, IWORK, INFO )
                    518: *
                    519: *     Transform the solution matrix X to a solution of the original
                    520: *     system.
                    521: *
                    522:       IF( RCEQU ) THEN
                    523:          DO 70 J = 1, NRHS
                    524:             DO 60 I = 1, N
                    525:                X( I, J ) = S( I )*X( I, J )
                    526:    60       CONTINUE
                    527:    70    CONTINUE
                    528:          DO 80 J = 1, NRHS
                    529:             FERR( J ) = FERR( J ) / SCOND
                    530:    80    CONTINUE
                    531:       END IF
                    532: *
                    533: *     Set INFO = N+1 if the matrix is singular to working precision.
                    534: *
                    535:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    536:      $   INFO = N + 1
                    537: *
                    538:       RETURN
                    539: *
                    540: *     End of DPBSVX
                    541: *
                    542:       END

CVSweb interface <joel.bertrand@systella.fr>