Annotation of rpl/lapack/lapack/dpbsvx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
        !             2:      $                   EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
        !             3:      $                   WORK, IWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          EQUED, FACT, UPLO
        !            12:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
        !            13:       DOUBLE PRECISION   RCOND
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       INTEGER            IWORK( * )
        !            17:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
        !            18:      $                   BERR( * ), FERR( * ), S( * ), WORK( * ),
        !            19:      $                   X( LDX, * )
        !            20: *     ..
        !            21: *
        !            22: *  Purpose
        !            23: *  =======
        !            24: *
        !            25: *  DPBSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
        !            26: *  compute the solution to a real system of linear equations
        !            27: *     A * X = B,
        !            28: *  where A is an N-by-N symmetric positive definite band matrix and X
        !            29: *  and B are N-by-NRHS matrices.
        !            30: *
        !            31: *  Error bounds on the solution and a condition estimate are also
        !            32: *  provided.
        !            33: *
        !            34: *  Description
        !            35: *  ===========
        !            36: *
        !            37: *  The following steps are performed:
        !            38: *
        !            39: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
        !            40: *     the system:
        !            41: *        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
        !            42: *     Whether or not the system will be equilibrated depends on the
        !            43: *     scaling of the matrix A, but if equilibration is used, A is
        !            44: *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
        !            45: *
        !            46: *  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
        !            47: *     factor the matrix A (after equilibration if FACT = 'E') as
        !            48: *        A = U**T * U,  if UPLO = 'U', or
        !            49: *        A = L * L**T,  if UPLO = 'L',
        !            50: *     where U is an upper triangular band matrix, and L is a lower
        !            51: *     triangular band matrix.
        !            52: *
        !            53: *  3. If the leading i-by-i principal minor is not positive definite,
        !            54: *     then the routine returns with INFO = i. Otherwise, the factored
        !            55: *     form of A is used to estimate the condition number of the matrix
        !            56: *     A.  If the reciprocal of the condition number is less than machine
        !            57: *     precision, INFO = N+1 is returned as a warning, but the routine
        !            58: *     still goes on to solve for X and compute error bounds as
        !            59: *     described below.
        !            60: *
        !            61: *  4. The system of equations is solved for X using the factored form
        !            62: *     of A.
        !            63: *
        !            64: *  5. Iterative refinement is applied to improve the computed solution
        !            65: *     matrix and calculate error bounds and backward error estimates
        !            66: *     for it.
        !            67: *
        !            68: *  6. If equilibration was used, the matrix X is premultiplied by
        !            69: *     diag(S) so that it solves the original system before
        !            70: *     equilibration.
        !            71: *
        !            72: *  Arguments
        !            73: *  =========
        !            74: *
        !            75: *  FACT    (input) CHARACTER*1
        !            76: *          Specifies whether or not the factored form of the matrix A is
        !            77: *          supplied on entry, and if not, whether the matrix A should be
        !            78: *          equilibrated before it is factored.
        !            79: *          = 'F':  On entry, AFB contains the factored form of A.
        !            80: *                  If EQUED = 'Y', the matrix A has been equilibrated
        !            81: *                  with scaling factors given by S.  AB and AFB will not
        !            82: *                  be modified.
        !            83: *          = 'N':  The matrix A will be copied to AFB and factored.
        !            84: *          = 'E':  The matrix A will be equilibrated if necessary, then
        !            85: *                  copied to AFB and factored.
        !            86: *
        !            87: *  UPLO    (input) CHARACTER*1
        !            88: *          = 'U':  Upper triangle of A is stored;
        !            89: *          = 'L':  Lower triangle of A is stored.
        !            90: *
        !            91: *  N       (input) INTEGER
        !            92: *          The number of linear equations, i.e., the order of the
        !            93: *          matrix A.  N >= 0.
        !            94: *
        !            95: *  KD      (input) INTEGER
        !            96: *          The number of superdiagonals of the matrix A if UPLO = 'U',
        !            97: *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
        !            98: *
        !            99: *  NRHS    (input) INTEGER
        !           100: *          The number of right-hand sides, i.e., the number of columns
        !           101: *          of the matrices B and X.  NRHS >= 0.
        !           102: *
        !           103: *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
        !           104: *          On entry, the upper or lower triangle of the symmetric band
        !           105: *          matrix A, stored in the first KD+1 rows of the array, except
        !           106: *          if FACT = 'F' and EQUED = 'Y', then A must contain the
        !           107: *          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A
        !           108: *          is stored in the j-th column of the array AB as follows:
        !           109: *          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
        !           110: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
        !           111: *          See below for further details.
        !           112: *
        !           113: *          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
        !           114: *          diag(S)*A*diag(S).
        !           115: *
        !           116: *  LDAB    (input) INTEGER
        !           117: *          The leading dimension of the array A.  LDAB >= KD+1.
        !           118: *
        !           119: *  AFB     (input or output) DOUBLE PRECISION array, dimension (LDAFB,N)
        !           120: *          If FACT = 'F', then AFB is an input argument and on entry
        !           121: *          contains the triangular factor U or L from the Cholesky
        !           122: *          factorization A = U**T*U or A = L*L**T of the band matrix
        !           123: *          A, in the same storage format as A (see AB).  If EQUED = 'Y',
        !           124: *          then AFB is the factored form of the equilibrated matrix A.
        !           125: *
        !           126: *          If FACT = 'N', then AFB is an output argument and on exit
        !           127: *          returns the triangular factor U or L from the Cholesky
        !           128: *          factorization A = U**T*U or A = L*L**T.
        !           129: *
        !           130: *          If FACT = 'E', then AFB is an output argument and on exit
        !           131: *          returns the triangular factor U or L from the Cholesky
        !           132: *          factorization A = U**T*U or A = L*L**T of the equilibrated
        !           133: *          matrix A (see the description of A for the form of the
        !           134: *          equilibrated matrix).
        !           135: *
        !           136: *  LDAFB   (input) INTEGER
        !           137: *          The leading dimension of the array AFB.  LDAFB >= KD+1.
        !           138: *
        !           139: *  EQUED   (input or output) CHARACTER*1
        !           140: *          Specifies the form of equilibration that was done.
        !           141: *          = 'N':  No equilibration (always true if FACT = 'N').
        !           142: *          = 'Y':  Equilibration was done, i.e., A has been replaced by
        !           143: *                  diag(S) * A * diag(S).
        !           144: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
        !           145: *          output argument.
        !           146: *
        !           147: *  S       (input or output) DOUBLE PRECISION array, dimension (N)
        !           148: *          The scale factors for A; not accessed if EQUED = 'N'.  S is
        !           149: *          an input argument if FACT = 'F'; otherwise, S is an output
        !           150: *          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
        !           151: *          must be positive.
        !           152: *
        !           153: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           154: *          On entry, the N-by-NRHS right hand side matrix B.
        !           155: *          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
        !           156: *          B is overwritten by diag(S) * B.
        !           157: *
        !           158: *  LDB     (input) INTEGER
        !           159: *          The leading dimension of the array B.  LDB >= max(1,N).
        !           160: *
        !           161: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
        !           162: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
        !           163: *          the original system of equations.  Note that if EQUED = 'Y',
        !           164: *          A and B are modified on exit, and the solution to the
        !           165: *          equilibrated system is inv(diag(S))*X.
        !           166: *
        !           167: *  LDX     (input) INTEGER
        !           168: *          The leading dimension of the array X.  LDX >= max(1,N).
        !           169: *
        !           170: *  RCOND   (output) DOUBLE PRECISION
        !           171: *          The estimate of the reciprocal condition number of the matrix
        !           172: *          A after equilibration (if done).  If RCOND is less than the
        !           173: *          machine precision (in particular, if RCOND = 0), the matrix
        !           174: *          is singular to working precision.  This condition is
        !           175: *          indicated by a return code of INFO > 0.
        !           176: *
        !           177: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           178: *          The estimated forward error bound for each solution vector
        !           179: *          X(j) (the j-th column of the solution matrix X).
        !           180: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           181: *          is an estimated upper bound for the magnitude of the largest
        !           182: *          element in (X(j) - XTRUE) divided by the magnitude of the
        !           183: *          largest element in X(j).  The estimate is as reliable as
        !           184: *          the estimate for RCOND, and is almost always a slight
        !           185: *          overestimate of the true error.
        !           186: *
        !           187: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           188: *          The componentwise relative backward error of each solution
        !           189: *          vector X(j) (i.e., the smallest relative change in
        !           190: *          any element of A or B that makes X(j) an exact solution).
        !           191: *
        !           192: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
        !           193: *
        !           194: *  IWORK   (workspace) INTEGER array, dimension (N)
        !           195: *
        !           196: *  INFO    (output) INTEGER
        !           197: *          = 0:  successful exit
        !           198: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           199: *          > 0:  if INFO = i, and i is
        !           200: *                <= N:  the leading minor of order i of A is
        !           201: *                       not positive definite, so the factorization
        !           202: *                       could not be completed, and the solution has not
        !           203: *                       been computed. RCOND = 0 is returned.
        !           204: *                = N+1: U is nonsingular, but RCOND is less than machine
        !           205: *                       precision, meaning that the matrix is singular
        !           206: *                       to working precision.  Nevertheless, the
        !           207: *                       solution and error bounds are computed because
        !           208: *                       there are a number of situations where the
        !           209: *                       computed solution can be more accurate than the
        !           210: *                       value of RCOND would suggest.
        !           211: *
        !           212: *  Further Details
        !           213: *  ===============
        !           214: *
        !           215: *  The band storage scheme is illustrated by the following example, when
        !           216: *  N = 6, KD = 2, and UPLO = 'U':
        !           217: *
        !           218: *  Two-dimensional storage of the symmetric matrix A:
        !           219: *
        !           220: *     a11  a12  a13
        !           221: *          a22  a23  a24
        !           222: *               a33  a34  a35
        !           223: *                    a44  a45  a46
        !           224: *                         a55  a56
        !           225: *     (aij=conjg(aji))         a66
        !           226: *
        !           227: *  Band storage of the upper triangle of A:
        !           228: *
        !           229: *      *    *   a13  a24  a35  a46
        !           230: *      *   a12  a23  a34  a45  a56
        !           231: *     a11  a22  a33  a44  a55  a66
        !           232: *
        !           233: *  Similarly, if UPLO = 'L' the format of A is as follows:
        !           234: *
        !           235: *     a11  a22  a33  a44  a55  a66
        !           236: *     a21  a32  a43  a54  a65   *
        !           237: *     a31  a42  a53  a64   *    *
        !           238: *
        !           239: *  Array elements marked * are not used by the routine.
        !           240: *
        !           241: *  =====================================================================
        !           242: *
        !           243: *     .. Parameters ..
        !           244:       DOUBLE PRECISION   ZERO, ONE
        !           245:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           246: *     ..
        !           247: *     .. Local Scalars ..
        !           248:       LOGICAL            EQUIL, NOFACT, RCEQU, UPPER
        !           249:       INTEGER            I, INFEQU, J, J1, J2
        !           250:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
        !           251: *     ..
        !           252: *     .. External Functions ..
        !           253:       LOGICAL            LSAME
        !           254:       DOUBLE PRECISION   DLAMCH, DLANSB
        !           255:       EXTERNAL           LSAME, DLAMCH, DLANSB
        !           256: *     ..
        !           257: *     .. External Subroutines ..
        !           258:       EXTERNAL           DCOPY, DLACPY, DLAQSB, DPBCON, DPBEQU, DPBRFS,
        !           259:      $                   DPBTRF, DPBTRS, XERBLA
        !           260: *     ..
        !           261: *     .. Intrinsic Functions ..
        !           262:       INTRINSIC          MAX, MIN
        !           263: *     ..
        !           264: *     .. Executable Statements ..
        !           265: *
        !           266:       INFO = 0
        !           267:       NOFACT = LSAME( FACT, 'N' )
        !           268:       EQUIL = LSAME( FACT, 'E' )
        !           269:       UPPER = LSAME( UPLO, 'U' )
        !           270:       IF( NOFACT .OR. EQUIL ) THEN
        !           271:          EQUED = 'N'
        !           272:          RCEQU = .FALSE.
        !           273:       ELSE
        !           274:          RCEQU = LSAME( EQUED, 'Y' )
        !           275:          SMLNUM = DLAMCH( 'Safe minimum' )
        !           276:          BIGNUM = ONE / SMLNUM
        !           277:       END IF
        !           278: *
        !           279: *     Test the input parameters.
        !           280: *
        !           281:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
        !           282:      $     THEN
        !           283:          INFO = -1
        !           284:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
        !           285:          INFO = -2
        !           286:       ELSE IF( N.LT.0 ) THEN
        !           287:          INFO = -3
        !           288:       ELSE IF( KD.LT.0 ) THEN
        !           289:          INFO = -4
        !           290:       ELSE IF( NRHS.LT.0 ) THEN
        !           291:          INFO = -5
        !           292:       ELSE IF( LDAB.LT.KD+1 ) THEN
        !           293:          INFO = -7
        !           294:       ELSE IF( LDAFB.LT.KD+1 ) THEN
        !           295:          INFO = -9
        !           296:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
        !           297:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
        !           298:          INFO = -10
        !           299:       ELSE
        !           300:          IF( RCEQU ) THEN
        !           301:             SMIN = BIGNUM
        !           302:             SMAX = ZERO
        !           303:             DO 10 J = 1, N
        !           304:                SMIN = MIN( SMIN, S( J ) )
        !           305:                SMAX = MAX( SMAX, S( J ) )
        !           306:    10       CONTINUE
        !           307:             IF( SMIN.LE.ZERO ) THEN
        !           308:                INFO = -11
        !           309:             ELSE IF( N.GT.0 ) THEN
        !           310:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
        !           311:             ELSE
        !           312:                SCOND = ONE
        !           313:             END IF
        !           314:          END IF
        !           315:          IF( INFO.EQ.0 ) THEN
        !           316:             IF( LDB.LT.MAX( 1, N ) ) THEN
        !           317:                INFO = -13
        !           318:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           319:                INFO = -15
        !           320:             END IF
        !           321:          END IF
        !           322:       END IF
        !           323: *
        !           324:       IF( INFO.NE.0 ) THEN
        !           325:          CALL XERBLA( 'DPBSVX', -INFO )
        !           326:          RETURN
        !           327:       END IF
        !           328: *
        !           329:       IF( EQUIL ) THEN
        !           330: *
        !           331: *        Compute row and column scalings to equilibrate the matrix A.
        !           332: *
        !           333:          CALL DPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFEQU )
        !           334:          IF( INFEQU.EQ.0 ) THEN
        !           335: *
        !           336: *           Equilibrate the matrix.
        !           337: *
        !           338:             CALL DLAQSB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
        !           339:             RCEQU = LSAME( EQUED, 'Y' )
        !           340:          END IF
        !           341:       END IF
        !           342: *
        !           343: *     Scale the right-hand side.
        !           344: *
        !           345:       IF( RCEQU ) THEN
        !           346:          DO 30 J = 1, NRHS
        !           347:             DO 20 I = 1, N
        !           348:                B( I, J ) = S( I )*B( I, J )
        !           349:    20       CONTINUE
        !           350:    30    CONTINUE
        !           351:       END IF
        !           352: *
        !           353:       IF( NOFACT .OR. EQUIL ) THEN
        !           354: *
        !           355: *        Compute the Cholesky factorization A = U'*U or A = L*L'.
        !           356: *
        !           357:          IF( UPPER ) THEN
        !           358:             DO 40 J = 1, N
        !           359:                J1 = MAX( J-KD, 1 )
        !           360:                CALL DCOPY( J-J1+1, AB( KD+1-J+J1, J ), 1,
        !           361:      $                     AFB( KD+1-J+J1, J ), 1 )
        !           362:    40       CONTINUE
        !           363:          ELSE
        !           364:             DO 50 J = 1, N
        !           365:                J2 = MIN( J+KD, N )
        !           366:                CALL DCOPY( J2-J+1, AB( 1, J ), 1, AFB( 1, J ), 1 )
        !           367:    50       CONTINUE
        !           368:          END IF
        !           369: *
        !           370:          CALL DPBTRF( UPLO, N, KD, AFB, LDAFB, INFO )
        !           371: *
        !           372: *        Return if INFO is non-zero.
        !           373: *
        !           374:          IF( INFO.GT.0 )THEN
        !           375:             RCOND = ZERO
        !           376:             RETURN
        !           377:          END IF
        !           378:       END IF
        !           379: *
        !           380: *     Compute the norm of the matrix A.
        !           381: *
        !           382:       ANORM = DLANSB( '1', UPLO, N, KD, AB, LDAB, WORK )
        !           383: *
        !           384: *     Compute the reciprocal of the condition number of A.
        !           385: *
        !           386:       CALL DPBCON( UPLO, N, KD, AFB, LDAFB, ANORM, RCOND, WORK, IWORK,
        !           387:      $             INFO )
        !           388: *
        !           389: *     Compute the solution matrix X.
        !           390: *
        !           391:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
        !           392:       CALL DPBTRS( UPLO, N, KD, NRHS, AFB, LDAFB, X, LDX, INFO )
        !           393: *
        !           394: *     Use iterative refinement to improve the computed solution and
        !           395: *     compute error bounds and backward error estimates for it.
        !           396: *
        !           397:       CALL DPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X,
        !           398:      $             LDX, FERR, BERR, WORK, IWORK, INFO )
        !           399: *
        !           400: *     Transform the solution matrix X to a solution of the original
        !           401: *     system.
        !           402: *
        !           403:       IF( RCEQU ) THEN
        !           404:          DO 70 J = 1, NRHS
        !           405:             DO 60 I = 1, N
        !           406:                X( I, J ) = S( I )*X( I, J )
        !           407:    60       CONTINUE
        !           408:    70    CONTINUE
        !           409:          DO 80 J = 1, NRHS
        !           410:             FERR( J ) = FERR( J ) / SCOND
        !           411:    80    CONTINUE
        !           412:       END IF
        !           413: *
        !           414: *     Set INFO = N+1 if the matrix is singular to working precision.
        !           415: *
        !           416:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
        !           417:      $   INFO = N + 1
        !           418: *
        !           419:       RETURN
        !           420: *
        !           421: *     End of DPBSVX
        !           422: *
        !           423:       END

CVSweb interface <joel.bertrand@systella.fr>