File:  [local] / rpl / lapack / lapack / dpbstf.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:03 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DPBSTF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DPBSTF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpbstf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpbstf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpbstf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DPBSTF( UPLO, N, KD, AB, LDAB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, KD, LDAB, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   AB( LDAB, * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DPBSTF computes a split Cholesky factorization of a real
   38: *> symmetric positive definite band matrix A.
   39: *>
   40: *> This routine is designed to be used in conjunction with DSBGST.
   41: *>
   42: *> The factorization has the form  A = S**T*S  where S is a band matrix
   43: *> of the same bandwidth as A and the following structure:
   44: *>
   45: *>   S = ( U    )
   46: *>       ( M  L )
   47: *>
   48: *> where U is upper triangular of order m = (n+kd)/2, and L is lower
   49: *> triangular of order n-m.
   50: *> \endverbatim
   51: *
   52: *  Arguments:
   53: *  ==========
   54: *
   55: *> \param[in] UPLO
   56: *> \verbatim
   57: *>          UPLO is CHARACTER*1
   58: *>          = 'U':  Upper triangle of A is stored;
   59: *>          = 'L':  Lower triangle of A is stored.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] KD
   69: *> \verbatim
   70: *>          KD is INTEGER
   71: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
   72: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   73: *> \endverbatim
   74: *>
   75: *> \param[in,out] AB
   76: *> \verbatim
   77: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
   78: *>          On entry, the upper or lower triangle of the symmetric band
   79: *>          matrix A, stored in the first kd+1 rows of the array.  The
   80: *>          j-th column of A is stored in the j-th column of the array AB
   81: *>          as follows:
   82: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   83: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   84: *>
   85: *>          On exit, if INFO = 0, the factor S from the split Cholesky
   86: *>          factorization A = S**T*S. See Further Details.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] LDAB
   90: *> \verbatim
   91: *>          LDAB is INTEGER
   92: *>          The leading dimension of the array AB.  LDAB >= KD+1.
   93: *> \endverbatim
   94: *>
   95: *> \param[out] INFO
   96: *> \verbatim
   97: *>          INFO is INTEGER
   98: *>          = 0: successful exit
   99: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  100: *>          > 0: if INFO = i, the factorization could not be completed,
  101: *>               because the updated element a(i,i) was negative; the
  102: *>               matrix A is not positive definite.
  103: *> \endverbatim
  104: *
  105: *  Authors:
  106: *  ========
  107: *
  108: *> \author Univ. of Tennessee
  109: *> \author Univ. of California Berkeley
  110: *> \author Univ. of Colorado Denver
  111: *> \author NAG Ltd.
  112: *
  113: *> \ingroup doubleOTHERcomputational
  114: *
  115: *> \par Further Details:
  116: *  =====================
  117: *>
  118: *> \verbatim
  119: *>
  120: *>  The band storage scheme is illustrated by the following example, when
  121: *>  N = 7, KD = 2:
  122: *>
  123: *>  S = ( s11  s12  s13                     )
  124: *>      (      s22  s23  s24                )
  125: *>      (           s33  s34                )
  126: *>      (                s44                )
  127: *>      (           s53  s54  s55           )
  128: *>      (                s64  s65  s66      )
  129: *>      (                     s75  s76  s77 )
  130: *>
  131: *>  If UPLO = 'U', the array AB holds:
  132: *>
  133: *>  on entry:                          on exit:
  134: *>
  135: *>   *    *   a13  a24  a35  a46  a57   *    *   s13  s24  s53  s64  s75
  136: *>   *   a12  a23  a34  a45  a56  a67   *   s12  s23  s34  s54  s65  s76
  137: *>  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55  s66  s77
  138: *>
  139: *>  If UPLO = 'L', the array AB holds:
  140: *>
  141: *>  on entry:                          on exit:
  142: *>
  143: *>  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55  s66  s77
  144: *>  a21  a32  a43  a54  a65  a76   *   s12  s23  s34  s54  s65  s76   *
  145: *>  a31  a42  a53  a64  a64   *    *   s13  s24  s53  s64  s75   *    *
  146: *>
  147: *>  Array elements marked * are not used by the routine.
  148: *> \endverbatim
  149: *>
  150: *  =====================================================================
  151:       SUBROUTINE DPBSTF( UPLO, N, KD, AB, LDAB, INFO )
  152: *
  153: *  -- LAPACK computational routine --
  154: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  155: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  156: *
  157: *     .. Scalar Arguments ..
  158:       CHARACTER          UPLO
  159:       INTEGER            INFO, KD, LDAB, N
  160: *     ..
  161: *     .. Array Arguments ..
  162:       DOUBLE PRECISION   AB( LDAB, * )
  163: *     ..
  164: *
  165: *  =====================================================================
  166: *
  167: *     .. Parameters ..
  168:       DOUBLE PRECISION   ONE, ZERO
  169:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  170: *     ..
  171: *     .. Local Scalars ..
  172:       LOGICAL            UPPER
  173:       INTEGER            J, KLD, KM, M
  174:       DOUBLE PRECISION   AJJ
  175: *     ..
  176: *     .. External Functions ..
  177:       LOGICAL            LSAME
  178:       EXTERNAL           LSAME
  179: *     ..
  180: *     .. External Subroutines ..
  181:       EXTERNAL           DSCAL, DSYR, XERBLA
  182: *     ..
  183: *     .. Intrinsic Functions ..
  184:       INTRINSIC          MAX, MIN, SQRT
  185: *     ..
  186: *     .. Executable Statements ..
  187: *
  188: *     Test the input parameters.
  189: *
  190:       INFO = 0
  191:       UPPER = LSAME( UPLO, 'U' )
  192:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  193:          INFO = -1
  194:       ELSE IF( N.LT.0 ) THEN
  195:          INFO = -2
  196:       ELSE IF( KD.LT.0 ) THEN
  197:          INFO = -3
  198:       ELSE IF( LDAB.LT.KD+1 ) THEN
  199:          INFO = -5
  200:       END IF
  201:       IF( INFO.NE.0 ) THEN
  202:          CALL XERBLA( 'DPBSTF', -INFO )
  203:          RETURN
  204:       END IF
  205: *
  206: *     Quick return if possible
  207: *
  208:       IF( N.EQ.0 )
  209:      $   RETURN
  210: *
  211:       KLD = MAX( 1, LDAB-1 )
  212: *
  213: *     Set the splitting point m.
  214: *
  215:       M = ( N+KD ) / 2
  216: *
  217:       IF( UPPER ) THEN
  218: *
  219: *        Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m).
  220: *
  221:          DO 10 J = N, M + 1, -1
  222: *
  223: *           Compute s(j,j) and test for non-positive-definiteness.
  224: *
  225:             AJJ = AB( KD+1, J )
  226:             IF( AJJ.LE.ZERO )
  227:      $         GO TO 50
  228:             AJJ = SQRT( AJJ )
  229:             AB( KD+1, J ) = AJJ
  230:             KM = MIN( J-1, KD )
  231: *
  232: *           Compute elements j-km:j-1 of the j-th column and update the
  233: *           the leading submatrix within the band.
  234: *
  235:             CALL DSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
  236:             CALL DSYR( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
  237:      $                 AB( KD+1, J-KM ), KLD )
  238:    10    CONTINUE
  239: *
  240: *        Factorize the updated submatrix A(1:m,1:m) as U**T*U.
  241: *
  242:          DO 20 J = 1, M
  243: *
  244: *           Compute s(j,j) and test for non-positive-definiteness.
  245: *
  246:             AJJ = AB( KD+1, J )
  247:             IF( AJJ.LE.ZERO )
  248:      $         GO TO 50
  249:             AJJ = SQRT( AJJ )
  250:             AB( KD+1, J ) = AJJ
  251:             KM = MIN( KD, M-J )
  252: *
  253: *           Compute elements j+1:j+km of the j-th row and update the
  254: *           trailing submatrix within the band.
  255: *
  256:             IF( KM.GT.0 ) THEN
  257:                CALL DSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
  258:                CALL DSYR( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
  259:      $                    AB( KD+1, J+1 ), KLD )
  260:             END IF
  261:    20    CONTINUE
  262:       ELSE
  263: *
  264: *        Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m).
  265: *
  266:          DO 30 J = N, M + 1, -1
  267: *
  268: *           Compute s(j,j) and test for non-positive-definiteness.
  269: *
  270:             AJJ = AB( 1, J )
  271:             IF( AJJ.LE.ZERO )
  272:      $         GO TO 50
  273:             AJJ = SQRT( AJJ )
  274:             AB( 1, J ) = AJJ
  275:             KM = MIN( J-1, KD )
  276: *
  277: *           Compute elements j-km:j-1 of the j-th row and update the
  278: *           trailing submatrix within the band.
  279: *
  280:             CALL DSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
  281:             CALL DSYR( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
  282:      $                 AB( 1, J-KM ), KLD )
  283:    30    CONTINUE
  284: *
  285: *        Factorize the updated submatrix A(1:m,1:m) as U**T*U.
  286: *
  287:          DO 40 J = 1, M
  288: *
  289: *           Compute s(j,j) and test for non-positive-definiteness.
  290: *
  291:             AJJ = AB( 1, J )
  292:             IF( AJJ.LE.ZERO )
  293:      $         GO TO 50
  294:             AJJ = SQRT( AJJ )
  295:             AB( 1, J ) = AJJ
  296:             KM = MIN( KD, M-J )
  297: *
  298: *           Compute elements j+1:j+km of the j-th column and update the
  299: *           trailing submatrix within the band.
  300: *
  301:             IF( KM.GT.0 ) THEN
  302:                CALL DSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
  303:                CALL DSYR( 'Lower', KM, -ONE, AB( 2, J ), 1,
  304:      $                    AB( 1, J+1 ), KLD )
  305:             END IF
  306:    40    CONTINUE
  307:       END IF
  308:       RETURN
  309: *
  310:    50 CONTINUE
  311:       INFO = J
  312:       RETURN
  313: *
  314: *     End of DPBSTF
  315: *
  316:       END

CVSweb interface <joel.bertrand@systella.fr>