File:  [local] / rpl / lapack / lapack / dpbrfs.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:45 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
    2:      $                   LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          UPLO
   13:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IWORK( * )
   17:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   18:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  DPBRFS improves the computed solution to a system of linear
   25: *  equations when the coefficient matrix is symmetric positive definite
   26: *  and banded, and provides error bounds and backward error estimates
   27: *  for the solution.
   28: *
   29: *  Arguments
   30: *  =========
   31: *
   32: *  UPLO    (input) CHARACTER*1
   33: *          = 'U':  Upper triangle of A is stored;
   34: *          = 'L':  Lower triangle of A is stored.
   35: *
   36: *  N       (input) INTEGER
   37: *          The order of the matrix A.  N >= 0.
   38: *
   39: *  KD      (input) INTEGER
   40: *          The number of superdiagonals of the matrix A if UPLO = 'U',
   41: *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   42: *
   43: *  NRHS    (input) INTEGER
   44: *          The number of right hand sides, i.e., the number of columns
   45: *          of the matrices B and X.  NRHS >= 0.
   46: *
   47: *  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
   48: *          The upper or lower triangle of the symmetric band matrix A,
   49: *          stored in the first KD+1 rows of the array.  The j-th column
   50: *          of A is stored in the j-th column of the array AB as follows:
   51: *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   52: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   53: *
   54: *  LDAB    (input) INTEGER
   55: *          The leading dimension of the array AB.  LDAB >= KD+1.
   56: *
   57: *  AFB     (input) DOUBLE PRECISION array, dimension (LDAFB,N)
   58: *          The triangular factor U or L from the Cholesky factorization
   59: *          A = U**T*U or A = L*L**T of the band matrix A as computed by
   60: *          DPBTRF, in the same storage format as A (see AB).
   61: *
   62: *  LDAFB   (input) INTEGER
   63: *          The leading dimension of the array AFB.  LDAFB >= KD+1.
   64: *
   65: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
   66: *          The right hand side matrix B.
   67: *
   68: *  LDB     (input) INTEGER
   69: *          The leading dimension of the array B.  LDB >= max(1,N).
   70: *
   71: *  X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
   72: *          On entry, the solution matrix X, as computed by DPBTRS.
   73: *          On exit, the improved solution matrix X.
   74: *
   75: *  LDX     (input) INTEGER
   76: *          The leading dimension of the array X.  LDX >= max(1,N).
   77: *
   78: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   79: *          The estimated forward error bound for each solution vector
   80: *          X(j) (the j-th column of the solution matrix X).
   81: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
   82: *          is an estimated upper bound for the magnitude of the largest
   83: *          element in (X(j) - XTRUE) divided by the magnitude of the
   84: *          largest element in X(j).  The estimate is as reliable as
   85: *          the estimate for RCOND, and is almost always a slight
   86: *          overestimate of the true error.
   87: *
   88: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   89: *          The componentwise relative backward error of each solution
   90: *          vector X(j) (i.e., the smallest relative change in
   91: *          any element of A or B that makes X(j) an exact solution).
   92: *
   93: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
   94: *
   95: *  IWORK   (workspace) INTEGER array, dimension (N)
   96: *
   97: *  INFO    (output) INTEGER
   98: *          = 0:  successful exit
   99: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  100: *
  101: *  Internal Parameters
  102: *  ===================
  103: *
  104: *  ITMAX is the maximum number of steps of iterative refinement.
  105: *
  106: *  =====================================================================
  107: *
  108: *     .. Parameters ..
  109:       INTEGER            ITMAX
  110:       PARAMETER          ( ITMAX = 5 )
  111:       DOUBLE PRECISION   ZERO
  112:       PARAMETER          ( ZERO = 0.0D+0 )
  113:       DOUBLE PRECISION   ONE
  114:       PARAMETER          ( ONE = 1.0D+0 )
  115:       DOUBLE PRECISION   TWO
  116:       PARAMETER          ( TWO = 2.0D+0 )
  117:       DOUBLE PRECISION   THREE
  118:       PARAMETER          ( THREE = 3.0D+0 )
  119: *     ..
  120: *     .. Local Scalars ..
  121:       LOGICAL            UPPER
  122:       INTEGER            COUNT, I, J, K, KASE, L, NZ
  123:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  124: *     ..
  125: *     .. Local Arrays ..
  126:       INTEGER            ISAVE( 3 )
  127: *     ..
  128: *     .. External Subroutines ..
  129:       EXTERNAL           DAXPY, DCOPY, DLACN2, DPBTRS, DSBMV, XERBLA
  130: *     ..
  131: *     .. Intrinsic Functions ..
  132:       INTRINSIC          ABS, MAX, MIN
  133: *     ..
  134: *     .. External Functions ..
  135:       LOGICAL            LSAME
  136:       DOUBLE PRECISION   DLAMCH
  137:       EXTERNAL           LSAME, DLAMCH
  138: *     ..
  139: *     .. Executable Statements ..
  140: *
  141: *     Test the input parameters.
  142: *
  143:       INFO = 0
  144:       UPPER = LSAME( UPLO, 'U' )
  145:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  146:          INFO = -1
  147:       ELSE IF( N.LT.0 ) THEN
  148:          INFO = -2
  149:       ELSE IF( KD.LT.0 ) THEN
  150:          INFO = -3
  151:       ELSE IF( NRHS.LT.0 ) THEN
  152:          INFO = -4
  153:       ELSE IF( LDAB.LT.KD+1 ) THEN
  154:          INFO = -6
  155:       ELSE IF( LDAFB.LT.KD+1 ) THEN
  156:          INFO = -8
  157:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  158:          INFO = -10
  159:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  160:          INFO = -12
  161:       END IF
  162:       IF( INFO.NE.0 ) THEN
  163:          CALL XERBLA( 'DPBRFS', -INFO )
  164:          RETURN
  165:       END IF
  166: *
  167: *     Quick return if possible
  168: *
  169:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  170:          DO 10 J = 1, NRHS
  171:             FERR( J ) = ZERO
  172:             BERR( J ) = ZERO
  173:    10    CONTINUE
  174:          RETURN
  175:       END IF
  176: *
  177: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  178: *
  179:       NZ = MIN( N+1, 2*KD+2 )
  180:       EPS = DLAMCH( 'Epsilon' )
  181:       SAFMIN = DLAMCH( 'Safe minimum' )
  182:       SAFE1 = NZ*SAFMIN
  183:       SAFE2 = SAFE1 / EPS
  184: *
  185: *     Do for each right hand side
  186: *
  187:       DO 140 J = 1, NRHS
  188: *
  189:          COUNT = 1
  190:          LSTRES = THREE
  191:    20    CONTINUE
  192: *
  193: *        Loop until stopping criterion is satisfied.
  194: *
  195: *        Compute residual R = B - A * X
  196: *
  197:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  198:          CALL DSBMV( UPLO, N, KD, -ONE, AB, LDAB, X( 1, J ), 1, ONE,
  199:      $               WORK( N+1 ), 1 )
  200: *
  201: *        Compute componentwise relative backward error from formula
  202: *
  203: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  204: *
  205: *        where abs(Z) is the componentwise absolute value of the matrix
  206: *        or vector Z.  If the i-th component of the denominator is less
  207: *        than SAFE2, then SAFE1 is added to the i-th components of the
  208: *        numerator and denominator before dividing.
  209: *
  210:          DO 30 I = 1, N
  211:             WORK( I ) = ABS( B( I, J ) )
  212:    30    CONTINUE
  213: *
  214: *        Compute abs(A)*abs(X) + abs(B).
  215: *
  216:          IF( UPPER ) THEN
  217:             DO 50 K = 1, N
  218:                S = ZERO
  219:                XK = ABS( X( K, J ) )
  220:                L = KD + 1 - K
  221:                DO 40 I = MAX( 1, K-KD ), K - 1
  222:                   WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
  223:                   S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
  224:    40          CONTINUE
  225:                WORK( K ) = WORK( K ) + ABS( AB( KD+1, K ) )*XK + S
  226:    50       CONTINUE
  227:          ELSE
  228:             DO 70 K = 1, N
  229:                S = ZERO
  230:                XK = ABS( X( K, J ) )
  231:                WORK( K ) = WORK( K ) + ABS( AB( 1, K ) )*XK
  232:                L = 1 - K
  233:                DO 60 I = K + 1, MIN( N, K+KD )
  234:                   WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
  235:                   S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
  236:    60          CONTINUE
  237:                WORK( K ) = WORK( K ) + S
  238:    70       CONTINUE
  239:          END IF
  240:          S = ZERO
  241:          DO 80 I = 1, N
  242:             IF( WORK( I ).GT.SAFE2 ) THEN
  243:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  244:             ELSE
  245:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  246:      $             ( WORK( I )+SAFE1 ) )
  247:             END IF
  248:    80    CONTINUE
  249:          BERR( J ) = S
  250: *
  251: *        Test stopping criterion. Continue iterating if
  252: *           1) The residual BERR(J) is larger than machine epsilon, and
  253: *           2) BERR(J) decreased by at least a factor of 2 during the
  254: *              last iteration, and
  255: *           3) At most ITMAX iterations tried.
  256: *
  257:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  258:      $       COUNT.LE.ITMAX ) THEN
  259: *
  260: *           Update solution and try again.
  261: *
  262:             CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
  263:      $                   INFO )
  264:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  265:             LSTRES = BERR( J )
  266:             COUNT = COUNT + 1
  267:             GO TO 20
  268:          END IF
  269: *
  270: *        Bound error from formula
  271: *
  272: *        norm(X - XTRUE) / norm(X) .le. FERR =
  273: *        norm( abs(inv(A))*
  274: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  275: *
  276: *        where
  277: *          norm(Z) is the magnitude of the largest component of Z
  278: *          inv(A) is the inverse of A
  279: *          abs(Z) is the componentwise absolute value of the matrix or
  280: *             vector Z
  281: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  282: *          EPS is machine epsilon
  283: *
  284: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  285: *        is incremented by SAFE1 if the i-th component of
  286: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  287: *
  288: *        Use DLACN2 to estimate the infinity-norm of the matrix
  289: *           inv(A) * diag(W),
  290: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  291: *
  292:          DO 90 I = 1, N
  293:             IF( WORK( I ).GT.SAFE2 ) THEN
  294:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  295:             ELSE
  296:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  297:             END IF
  298:    90    CONTINUE
  299: *
  300:          KASE = 0
  301:   100    CONTINUE
  302:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  303:      $                KASE, ISAVE )
  304:          IF( KASE.NE.0 ) THEN
  305:             IF( KASE.EQ.1 ) THEN
  306: *
  307: *              Multiply by diag(W)*inv(A').
  308: *
  309:                CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
  310:      $                      INFO )
  311:                DO 110 I = 1, N
  312:                   WORK( N+I ) = WORK( N+I )*WORK( I )
  313:   110          CONTINUE
  314:             ELSE IF( KASE.EQ.2 ) THEN
  315: *
  316: *              Multiply by inv(A)*diag(W).
  317: *
  318:                DO 120 I = 1, N
  319:                   WORK( N+I ) = WORK( N+I )*WORK( I )
  320:   120          CONTINUE
  321:                CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
  322:      $                      INFO )
  323:             END IF
  324:             GO TO 100
  325:          END IF
  326: *
  327: *        Normalize error.
  328: *
  329:          LSTRES = ZERO
  330:          DO 130 I = 1, N
  331:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  332:   130    CONTINUE
  333:          IF( LSTRES.NE.ZERO )
  334:      $      FERR( J ) = FERR( J ) / LSTRES
  335: *
  336:   140 CONTINUE
  337: *
  338:       RETURN
  339: *
  340: *     End of DPBRFS
  341: *
  342:       END

CVSweb interface <joel.bertrand@systella.fr>